资源简介
隐私参数ε能度量隐私保护程度及噪声量,但是其设置只能依赖于实验或专业人士经验,限制了差分隐私模型的使用与推广。针对这个问题,基于(ρ1,ρ2)-隐私模型提出一种启发式的隐私参数ε设置策略(limit privacy breaches in differential privacy,LPBDP),分析隐私参数ε与(ρ1,ρ2)的内在联系,实现噪声量的添加由(ρ1,ρ2)决定。LPBDP通过如下启发式原则设置隐私参数ε:如果攻击者关于目标受害者的先验概率小于阈值ρ1,攻击者得到差分隐私查询策略返回的加噪结果后,关于目标受害者的后验概率必须小于阈值ρ2。实验表明,LPBDP能够更直观地设置隐私参数ε以满足差分隐私约束。
评论
共有 条评论