• 大小: 2.56MB
    文件类型: .pdf
    金币: 1
    下载: 0 次
    发布日期: 2023-11-20
  • 语言: 其他
  • 标签: pdf  

资源简介

为实现自然条件下棉花叶片的精准分割,提出一种粒子群(Particle swarm optimization,PSO)优化算法和K-means聚类算法混合的棉花叶片图像分割方法。本算法将棉花叶片图像在RGB颜色空间模式下采用二维卷积 滤波进行去噪预处理,并将预处理后的彩色图像从RGB转换到目标与背景差异性最大的Q 分量、超G 分量、a*分量;随后在K均值聚类的一维数据空间中,利用PSO算法向全局像素解的子空间搜寻,通过迭代搜寻得到全局最优解,确定最佳聚类中心点,改善K均值聚类的收敛效果;最后,对像素进行聚类划分,从而得到棉花叶片分割结 果。按照不同天气条件和不同背景采集了1 200幅棉花叶片样本图像,对本研究算法进行测试。试验结果表明:该算法对于晴天、阴天和雨天图像中目标(棉花叶片)分割准确率分别达到92.39%、93.55%、88.09%,总体平均分割精度为91.34%,并与传统K均值算法比较,总体平均分割精度提高了5.41%。分割结果表明,本研究算法能够对 3种天气条件(晴天、阴天、雨天)与4种复杂背景(白地膜、黑地膜、秸秆、土壤)特征混合的棉花叶片图像实现准确分割,为棉花叶片的特征提取与病虫害识别等后续处理提供支持。

资源截图

代码片段和文件信息

评论

共有 条评论