• 大小: 81.07MB
    文件类型: .zip
    金币: 2
    下载: 0 次
    发布日期: 2024-01-31
  • 语言: 其他
  • 标签: DL  

资源简介

深度学习与PyTorch-代码和PPT,基于pytorch的深度学习资料

资源截图

代码片段和文件信息

import  torch
from    torch import nn





class AE(nn.Module):



    def __init__(self):
        super(AE self).__init__()


        # [b 784] => [b 20]
        self.encoder = nn.Sequential(
            nn.Linear(784 256)
            nn.ReLU()
            nn.Linear(256 64)
            nn.ReLU()
            nn.Linear(64 20)
            nn.ReLU()
        )
        # [b 20] => [b 784]
        self.decoder = nn.Sequential(
            nn.Linear(20 64)
            nn.ReLU()
            nn.Linear(64 256)
            nn.ReLU()
            nn.Linear(256 784)
            nn.Sigmoid()
        )


    def forward(self x):
        “““

        :param x: [b 1 28 28]
        :return:
        “““
        batchsz = x.size(0)
        # flatten
        x = x.view(batchsz 784)
        # encoder
        x = self.encoder(x)
        # decoder
        x = self.decoder(x)
        # reshape
        x = x.view(batchsz 1 28 28)

        return x None

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\
     文件           5  2019-03-27 00:58  DeepLearningTutorials-master\.gitignore
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\AutoEncoder实战\
     文件          18  2019-03-27 00:58  DeepLearningTutorials-master\AutoEncoder实战\.gitignore
     文件     3654768  2019-03-27 00:58  DeepLearningTutorials-master\AutoEncoder实战\AutoEncoders.pdf
     文件         969  2019-03-27 00:58  DeepLearningTutorials-master\AutoEncoder实战\ae.py
     文件        1710  2019-03-27 00:58  DeepLearningTutorials-master\AutoEncoder实战\main.py
     文件        1468  2019-03-27 00:58  DeepLearningTutorials-master\AutoEncoder实战\vae.py
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\
     文件          18  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\.gitignore
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\.idea\
     文件         453  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\.idea\Cifar10与ResNet18实战.iml
     文件         300  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\.idea\modules.xml
     文件         183  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\.idea\vcs.xml
     文件        9390  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\.idea\workspace.xml
     文件        1706  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\lenet5.py
     文件        2370  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\main.py
     文件        2459  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\resnet.py
     文件           0  2019-03-27 00:58  DeepLearningTutorials-master\Cifar10与ResNet18实战\考虑到大家的GPU较小,我们这里的ResNet18是阉割版
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\Lesson01-初见PyTorch\
     文件         353  2019-03-27 00:58  DeepLearningTutorials-master\Lesson01-初见PyTorch\autograd_demo.py
     文件         317  2019-03-27 00:58  DeepLearningTutorials-master\Lesson01-初见PyTorch\demo.lua
     文件      935770  2019-03-27 00:58  DeepLearningTutorials-master\Lesson01-初见PyTorch\lesson1.pdf
     文件         546  2019-03-27 00:58  DeepLearningTutorials-master\Lesson01-初见PyTorch\lesson1.py
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\Lesson02-开发环境准备\
     文件      971247  2019-03-27 00:58  DeepLearningTutorials-master\Lesson02-开发环境准备\lesson2.pdf
     文件          83  2019-03-27 00:58  DeepLearningTutorials-master\Lesson02-开发环境准备\main.py
     文件         809  2019-03-27 00:58  DeepLearningTutorials-master\README.md
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\lesson03-简单回归案例\
     文件      766408  2019-03-27 00:58  DeepLearningTutorials-master\lesson03-简单回归案例\lesson3.pdf
     目录           0  2019-03-27 00:58  DeepLearningTutorials-master\lesson04-简单回归案例-PyTorch求解\
............此处省略132个文件信息

评论

共有 条评论