资源简介
为克服单项预测方法产生的误差,利用灰色模型GM(1,N)、多元线性回归、BP神经网络等3种单项预测方法建立组合预测模型,并采用熵值法确定加权系数。通过对PHC管桩承载力进行比较预测,结果显示GM(1,N)法平均绝对百分比误差(MAPE)值为5.4%,多元线性回归法的MAPE为3.0%,BP神经网络法的MAPE为2.8%,组合预测法的MAPE为2.3%。因此组合预测法精度较高,实用性更强。
代码片段和文件信息
相关资源
- 基于动态分类器集成选择和GM(21)
- 基于ARIMA、BP神经网络与GM的组合模型
- 基于双隐含层BP神经网络的预测
- 基于PSO优化BP神经网络的水质预测研究
- BP神经网络算法逼近一个正弦函数
- 基于主成分分析与BP神经网络的雾天能
- 基于BP神经网络的挖掘机液压系统故障
- BP神经网络在手机评价中的应用
- 基于因素分析与BP神经网络的上市公司
- BP神经网络计算过程详解
- 基于BP神经网络电力系统短期负荷预测
- BP神经网络用于两类图片识别分类
- 各种优化BP神经网络算法
- 基于BP神经网络的车牌识别技术
- 基于LabVIEW的BP神经网络算法的设计实
- bp神经网络图像识别
- 基于BP神经网络的人脸识别的源代码
- BP神经网络在GPS高程拟合中的应用
- bp神经网络轴承故障诊断系统
- 基于遗传算法的BP神经网络在多目标优
- 论文:基于BP神经网络和GM1,1模型的
- BP神经网络详解与
- 车牌识别课程设计,能运行,模板匹
- BP数字识别代码——了解和测试BP神经
- BP神经网络实现函数拟合
- BP预测温度模型_2019.10.14.rar
- 基于PCA和BP神经网络的人脸识别
- excel版BP神经网络,公式运算
- BP神经网络的算法改进及应用
- 基于BP神经网络的无刷直流电机PID控制
评论
共有 条评论