资源简介
在本文中,我们分析了量子同源不变性(slN链同源性的Poincaré多项式)。 在正确地知道适当拓扑空间的同调性的大小的情况下,可以大大简化基于Euler-Poincaré公式的Kovanov-Rozansky型同源性的计算过程。 我们根据双曲几何的对称和谱函数来表达经典群的不可约张量表示的形式特征。 根据Labastida–Mariño–Ooguri–Vafa猜想,我们以Ruelle谱函数(无结,无结和链结的情况具有无限积)形式表示了Chern-Simons分区函数的表示形式。 被考虑)。 我们还为正交的Chern-Simons分区函数导出了一个无限积公式,并分析了无限积结构的奇异性和对称性
代码片段和文件信息
相关资源
- 由κ-Poincarér矩阵产生
- Looijenga的加权射影空间,Tate算法和
- 散射方程:从射影空间到热带草原
- I型跷跷板机制是中微子质量,重子不
- 修饰双对中微子混合和瘦素形成过程
- 寻找最小的反向跷跷板实现
- 最简单的跷跷板机制
- 跷跷板机制的自然性和Bogoliubov变换
- 在最小左右对称模型中解开跷跷板机
- 最小逆跷跷板机制中的暗物质
- I型跷跷板上沉重的Majorana中微子的界
- 跷跷板模型中违反立普顿风味的希格
- 在3-3-1模型中实现II型逆向跷跷板机制
- 具有低比例跷跷板机制的第一个$$ \
- S 4×U1中的小跷跷板模型
- 木头对称与小跷跷板
- 异常的离散风味对称性和畴壁问题
- 用衍射W电荷不对称性测试Pomeron风味对
- 6d SCFT和U1风味对称性
- 模块化不变风味模型中的CP违规
- 左右对称风味对称模型
- 轻子质量和模块化对称产生的混合
- 折衷口味组
- 暗物质和中微子的模块化对称模型
- 模块化对称Scotogenic模型
- 磁通压缩中的模块化对称异常
- 用于风味模型构建的模块化A 5对称性
- 风味的模块化不变模型中的广义CP对称
- 来自S 4模块化对称性的新A 4轻顿风味
- 风味和模块化对称性的统一
评论
共有 条评论