资源简介
基于Unruh效应,我们计算了Rindler空间中有限密度的自由复标量场中Bose-Einstein凝聚的临界加速度。 我们的模型对应于理想气体,该气体在零温度下在Minkowski时空中不断加速运动,该气体由复杂的标量粒子组成,可以认为是在Unruh温度下的热浴中。 在加速框架中,模型将以低加速度处于Bose-Einstein凝聚状态。 另一方面,由Unruh效应引起的热激发不会在高加速度下产生凝结。 我们的临界加速度是当我们逐渐减小加速度时,玻色-爱因斯坦凝聚开始出现在加速框架中的那个加速度。 为了进行计算,我们假设临界加速度远大于粒子的质量。
代码片段和文件信息
相关资源
- q广义Bose-Einstein和Fermi-Dirac系统的热力
- 带通量的Lovelock黑色p恤
- 具有Λ项的Einstein–Gauss&ndash
- Weyl和Einstein–Gauss–Bonnet引力中
- Einstein-Gauss-Bonnet引力的大D膜范例
- 5D Gauss-Bonnet引力下球形黑洞的热力学
- 高导动力学的经典和量子稳定性
- Bopp–Podolsky黑洞和无毛定理
- 铜酸盐异常缩放的全息模型
- Born-Infeld-dilaton-Lifshitz全息超导体的光
- 全息非计算机
- 纠缠熵探测具有指数非线性电动力学
- 全息非平衡加热
- 全息术的异常运输。 第一部分
- 具有非线性电动力学的高维全息超导
- 非线性电动力学对铜价奇特金属的反
- 非线性高自旋方程的0形区的电流相互
- 具有指数非线性电动力学的一维反向
- 大规模M2膜理论的全息术:非线性扩展
- 全息术的异常传输:第二部分
- 非线性电动力学的膜范例和全息直流
- 具有非线性电动力学的Lifshitz黑洞中铁
- 非线性电动力学全息超导体的非平衡
- 具有非线性电动力学的全息顺磁性-铁
- 全息的非线性兰格文动力学
- N $$ \\ mathcal {N} $$ = 2个同质超重力的单
- N = 2 $$ \\ mathcal {N} = 2 $$超重力和部分
- Born-Infeld引力理论中的洛夫洛克引力
- 三个时空维度和Nappi-Witten代数的非相
- 爱因斯坦-麦克斯韦-狄拉通重力中的李
评论
共有 条评论