• 大小: 0.30KB
    文件类型: .m
    金币: 1
    下载: 0 次
    发布日期: 2021-03-27
  • 语言: 其他
  • 标签: 其他  

资源简介


运用K-means算法进行图像分割, K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的 公式 公式 影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已

资源截图

代码片段和文件信息

function C=searchintial(Xmethodvarargin)
switch lower(method(1))
    case ‘s‘ 
        K=varargin{1};
        C=X(randsample(size(X1)K):);
    

评论

共有 条评论