资源简介
采用无极卡尔曼滤波来估算电池SOC,在Simulink中搭建ukf的模型
代码片段和文件信息
%% Nonlinear State Estimation of a Degrading Battery System
%
% This example shows how to estimate the states of a nonlinear system using
% an Unscented Kalman Filter in Simulink(TM). The example also illustrates
% how to develop an event-based Kalman Filter to update system parameters
% for more accurate state estimation. This example also requires
% Simscape(TM) and Stateflow(R).
% Copyright 2016-2017 The MathWorks Inc.
%% Overview
% Consider a battery model with the following equivalent circuit [1]
%
% <<../batteryEquivalentCircuit.jpg>>
%
% The model consists of a voltage source $E_m$ a series resistor $R_0$ and
% a single RC block with components $R_1$ and $C_1$. The battery alternates
% between charging and discharging cycles. In this example you estimate
% the state of charge (SOC) of the battery model using measured currents
% voltages and temperature of the battery. You assume the battery is a
% nonlinear system and estimate the SOC using an Unscented Kalman Filter.
% The capacity of the battery degrades with every discharge-charge cycle
% giving an inaccurate SOC estimation. You use an event-based linear Kalman
% filter to estimate the battery capacity when the battery transitions
% between charging and discharging. You then use the estimated capacity to
% indicate the health condition of the battery.
%%
% The Simulink model contains three major components: a battery model
% an Unscented Kalman Filter block and an event-based Kalman Filter block.
open_system(‘BatteryExampleUKF/‘)
%% Battery Model
% The battery model with thermal effect is implemented using Simscape software.
%
% <<../batteryMdl.jpg>>
%%
% The state transition equations for the battery model are given by:
%
% $$ \frac{d}{dt} \left(
% \begin{array}{cc}
% SOC \\
% U_{1}
% \end{array} \right) = \left(
% \begin{array}{cc}
% 0 \\
% -\frac{1}{R_1(SOCT_b)*C_1(SOCT_b)}U_1
% \end{array} \right) + \left(
% \begin{array}{cc}
% -\frac{1}{3600*C_q} \\
% \frac{1}{C_1(SOCT_b)}\end{array} \right)I
% + W
% $$
%
% where $R_1(SOCT_b)$ and $C_1(SOCT_b)$ are the thermal and SOC-dependent
% resistor and capacitor in the RC block $$ U_1 $$ is the voltage across
% capacitor $C_1$ $I$ is the input current $T_b$ is the battery
% temperature $C_q$ is the battery capacity (unit: Ah) and $W$ is
% the process noise.
%
% The input currents are randomly generated pulses when the battery is discharging and
% constant when the battery is charging.
%
% <<../batteryDischargeChargeCurve.jpg>>
%%
% The measurement equation is given by:
%
% $$ \begin{array} {ll}
% E = E_m(SOCT_b) - U_1 - IR_0(SOCT_b) + V
% \end{array} $$
%
% where $E$ is the measured output voltage $R_0(SOCT_b)$ is the serial
% resistor $E_m = E_m(SOCT_b)$ is the electromotive force from voltage
% source and $V$ is the measurement noise.
%
% In the model $R_0 R_1 C_1$ and $E_m$ are 2D look-up tables that are
% dependent on SOC and battery temperature. The parameters in the look-up
%
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 20961 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\batteryDischargeChargeCurve.jpg
文件 11498 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\batteryEquivalentCircuit.jpg
文件 55270 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\BatteryExampleUKF.slx
文件 63469 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\batteryMdl.jpg
文件 1977 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\BatteryParameters.mat
文件 86184 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\blockParametersUKF.jpg
文件 107450 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\blockSettingKF.jpg
文件 1981 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\C_table.ssc
文件 2466 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\Em_table.ssc
文件 48444 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\measurementEqn.jpg
文件 15606 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\NonlinearStateEstimationOfADegradingBatterySystemExample.m
文件 1772 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\R_table.ssc
文件 46203 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\stateEqn.jpg
文件 140 2020-07-29 09:37 NonlinearStateEstimationOfADegradingBatterySystemExample\说明.txt
- 上一篇:自动泊车
- 下一篇:cmake-3.18.0 下载好的cmake安装包
相关资源
- sgcWebSockets_D7 实现WebSockets
- 分散式储能系统的高电能质量应用方
- 储能行业如何有效解决电能质量问题
- 联想 IBM ThinkPad Z61t 9443 bios升级+升级操
- ALINX_ZYNQ_MPSoC(AXU3CG)SDK开发教程高级
- NIDA模型参数估计的MCMC算法实现及模型
- 论文研究 - 胶原蛋白燃料电池及其质
- NiO纳米电池材料的制备及电化学性能
- 基于单片机的电池安全检测系统设计
- 基于LTC6802的磷酸铁锂电池采集系统
- 矿井应急无源LED照明系统设计
- QCC增加电池电量显示的代码
- 基于深度神经网络的时域信道估计算
- SocketTool.exe工具
- Socket源码Demo
- Association of Angiotensin-converting enzyme 2
- Qt实现Winsock网络编程—Tcp服务端和
- Socket工具SocketTool
- 论文研究 - GARCH模型的模型阶次变更点
- 电池极化电势分析与电池内阻测定计
- 客户端服务器端TCP/IP通信控件源代码
- Au掺杂稀土合金作直接硼氢化物燃料电
- 制储运加氢站网络与燃料电池构成循
- Intel SoC处理器的I2C总线IP核设计与应用
- qwebsocket使用wss连接工程源码,qt5.7d
- 相对论运动增强了$$ \\ kappa $$ lt;math
- django+channels 2.0实现websocket
- 外商直接投资、进出口贸易与我国省
- Major histocompatibility complex II B allele p
- Factors Influencing the Association between CY
评论
共有 条评论