资源简介
yelp数据集最新数据资料,适合NLP分类任务,情感分类等。In 2015, Yelp held a contest in which it asked participants to predict the rating of
a restaurant given its review. Zhang, Zhao, and Lecun (2015) simplified the dataset by converting the 1- and 2-star ratings into a “negative” sentiment class and the 3- and 4-star ratings into a “positive” sentiment class, and split it into 560,000 training samples and 38,000 testing samples.
a restaurant given its review. Zhang, Zhao, and Lecun (2015) simplified the dataset by converting the 1- and 2-star ratings into a “negative” sentiment class and the 3- and 4-star ratings into a “positive” sentiment class, and split it into 560,000 training samples and 38,000 testing samples.
代码片段和文件信息
相关资源
- 中文基础情感词典(NTUSD/HowNet/Tsingh
- vocab.txt词典
- Deep Learning for NLP with TensorFlow2.0.zip
- 中文停用词表.txt
- nlp最全中文情感和语义词库
- 万兆四口PHY芯片NetLogic NLP2042详细手册
- NLPCC2012评估任务_面向中文微博的情感
- NLPCC2013评估任务_中文微博情绪识别
- 贪心NLP集训营.txt
- ElasticSearch6.4.3+Kibana6.4.3+hanlp6.4.3插件
- GoogleNews-vectors-negative300.bin.gz
- SemEval 2020 - Task 6数据集
- 中文信息发展处理报告自然语言处理
- 2012_donlp2_ansi_c
- 基于crf的中文命名实体识别完整代码
- nlpcc2013样例集,excel版
- 基于HanLP的汉语词性标注表
- 机器学习10-NLP自然语言处理大量餐馆
- cs224n:NLP视频中文字幕18集全集
- 情感分析词典,包含hownet词典、台湾
评论
共有 条评论