资源简介
循环神经网络的python应用代码。可参考。但注释较少,适合一定基础的,下载时请慎重。
代码片段和文件信息
“““
Fetch the daily stock prices from Google Finance for stocks in S & P 500.
@author: lilianweng
“““
import click
import os
import pandas as pd
import random
import time
import urllib2
from BeautifulSoup import BeautifulSoup
from datetime import datetime
DATA_DIR = “data“
RANDOM_SLEEP_TIMES = (1 5)
# This repo “github.com/datasets/s-and-p-500-companies“ has some other information about
# S & P 500 companies.
SP500_LIST_URL = “https://raw.githubusercontent.com/datasets/s-and-p-500-companies/master/data/constituents-financials.csv“
SP500_LIST_PATH = os.path.join(DATA_DIR “constituents-financials.csv“)
def _download_sp500_list():
if os.path.exists(SP500_LIST_PATH):
return
f = urllib2.urlopen(SP500_LIST_URL)
#print “Downloading ...“ SP500_LIST_URL
with open(SP500_LIST_PATH ‘w‘) as fin:
print >> fin f.read()
return
def _load_symbols():
_download_sp500_list()
df_sp500 = pd.read_csv(SP500_LIST_PATH)
df_sp500.sort(‘Market Cap‘ ascending=False inplace=True)
stock_symbols = df_sp500[‘Symbol‘].unique().tolist()
#print “Loaded %d stock symbols“ % len(stock_symbols)
return stock_symbols
def fetch_prices(symbol out_name):
“““
Fetch daily stock prices for stock ‘symbol‘ since 1980-01-01.
Args:
symbol (str): a stock abbr. symbol like “GOOG“ or “AAPL“.
Returns: a bool whether the fetch is succeeded.
“““
# Format today‘s date to match Google‘s finance history api.
now_datetime = datetime.now().strftime(“%b+%d+%Y“)
base_URL = “https://finance.google.com/finance/historical?output=csv&q={0}&startdate=Jan+1%2C+1980&enddate={1}“
symbol_url = base_URL.format(
urllib2.quote(symbol)
urllib2.quote(now_datetime ‘+‘)
)
print (“Fetching {} ...“.format(symbol))
print (symbol_url)
try:
f = urllib2.urlopen(symbol_url)
with open(out_name ‘w‘) as fin:
print >> fin f.read()
except urllib2.HTTPError:
print (“Failed when fetching {}“.format(symbol))
return False
data = pd.read_csv(out_name)
if data.empty:
print (“Remove {} because the data set is empty.“.format(out_name))
os.remove(out_name)
else:
dates = data.iloc[:0].tolist()
print (“# Fetched rows: %d [%s to %s]“ % (data.shape[0] dates[-1] dates[0]))
# Take a rest
sleep_time = random.randint(*RANDOM_SLEEP_TIMES)
print (“Sleeping ... %ds“ % sleep_time)
time.sleep(sleep_time)
return True
@click.command(help=“Fetch stock prices data“)
@click.option(‘--continued‘ is_flag=True)
def main(continued):
random.seed(time.time())
num_failure = 0
# This is S&P 500 index
#fetch_prices(‘INDEXSP%3A.INX‘)
symbols = _load_symbols()
for idx sym in enumerate(symbols):
out_name = os.path.join(DATA_DIR sym + “.csv“)
if continued and os.path.exists(out_name):
print(“Fetched“ sym)
continue
succee
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-06-14 15:42 stock-rnn-master\
文件 117 2018-03-13 15:08 stock-rnn-master\.gitignore
文件 2303 2018-03-13 15:08 stock-rnn-master\README.md
目录 0 2018-06-14 15:38 stock-rnn-master\data\
文件 0 2018-03-13 15:08 stock-rnn-master\data\.placeholder
文件 3234 2018-06-14 15:42 stock-rnn-master\data_fetcher.py
文件 2555 2018-03-13 15:08 stock-rnn-master\data_model.py
文件 3849 2018-03-13 15:08 stock-rnn-master\main.py
文件 13033 2018-03-13 15:08 stock-rnn-master\model_rnn.py
目录 0 2018-06-14 15:38 stock-rnn-master\sc
文件 2780 2018-03-13 15:08 stock-rnn-master\sc
文件 659 2018-03-13 15:08 stock-rnn-master\sc
文件 1131 2018-03-13 15:08 stock-rnn-master\sc
文件 4455 2018-03-13 15:08 stock-rnn-master\sc
- 上一篇:python资料.txt
- 下一篇:逻辑回归python实现
相关资源
- python实现SGBM图像匹配算法
- python实现灰度直方图均衡化
- scrapy_qunar_one
- Python学习全系列教程永久可用
- python简明教程.chm
- 抽奖大转盘python的图形化界面
- 双边滤波器实验报告及代码python
- python +MYSQL+HTML实现21蛋糕网上商城
- Python-直播答题助手自动检测出题搜索
- OpenCV入门教程+OpenCV官方教程中文版
- Python 串口工具源码+.exe文件
- Python开发的全栈股票系统.zip
- Python操作Excel表格并将其中部分数据写
- python书籍 PDF
- 利用python绘制散点图
- python+labview+No1.vi
- 老男孩python项目实战
- python源码制作whl文件.rar
- python3.5可用的scipy
- PYTHON3 经典50案例.pptx
- 计算机科学导论-python.pdf
- python模拟鼠标点击屏幕
- windows鼠标自动点击py脚本
- 鱼c小甲鱼零基础学python全套课后题和
- Python 练习题100道
- Practical Programming 2nd Edition
- wxPython Application Development Cookbook
- python 3.6
- Python 3.5.2 中文文档 互联网唯一CHM版本
- python3.5.2.chm官方文档
评论
共有 条评论