• 大小: 98KB
    文件类型: .zip
    金币: 2
    下载: 1 次
    发布日期: 2021-06-17
  • 语言: Python
  • 标签:

资源简介

流行BERT模型的一个简单而完整的实现

资源截图

代码片段和文件信息

# coding=utf-8
import torch
from torch.optim import Optimizer

class AdamWeightDecayOptimizer(Optimizer):
    “““A basic Adam optimizer that includes “correct“ L2 weight decay.
    https://github.com/google-research/bert/blob/master/optimization.py
    https://raw.githubusercontent.com/pytorch/pytorch/v1.0.0/torch/optim/adam.py“““
    def __init__(self params lr=1e-3 betas=(0.9 0.999) eps=1e-8
                 weight_decay=0 amsgrad=False):
        if not 0.0 <= lr:
            raise ValueError(“Invalid learning rate: {}“.format(lr))
        if not 0.0 <= eps:
            raise ValueError(“Invalid epsilon value: {}“.format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError(“Invalid beta parameter at index 0: {}“.format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError(“Invalid beta parameter at index 1: {}“.format(betas[1]))
        defaults = dict(lr=lr betas=betas eps=eps
                        weight_decay=weight_decay amsgrad=amsgrad)
        super(AdamWeightDecayOptimizer self).__init__(params defaults)

    def __setstate__(self state):
        super(AdamWeightDecayOptimizer self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault(‘amsgrad‘ False)

    def step(self closure=None):
        “““Performs a single optimization step.

        Arguments:
            closure (callable optional): A closure that reevaluates the model
                and returns the loss.
        “““
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group[‘params‘]:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError(‘Adam does not support sparse gradients please consider SparseAdam instead‘)
                amsgrad = group[‘amsgrad‘]

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state[‘step‘] = 0
                    # Exponential moving average of gradient values
                    state[‘exp_avg‘] = torch.zeros_like(p.data)
                    # Exponential moving average of squared gradient values
                    state[‘exp_avg_sq‘] = torch.zeros_like(p.data)
                    if amsgrad:
                        # Maintains max of all exp. moving avg. of sq. grad. values
                        state[‘max_exp_avg_sq‘] = torch.zeros_like(p.data)

                exp_avg exp_avg_sq = state[‘exp_avg‘] state[‘exp_avg_sq‘]
                if amsgrad:
                    max_exp_avg_sq = state[‘max_exp_avg_sq‘]
                beta1 beta2 = group[‘betas‘]

                state[‘step‘] += 1

                # Decay the first and second moment running average coefficient
                exp_avg.mul_(beta1).add_(1 - beta1 grad)
                exp_avg_sq.mul_

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----
     目录           0  2019-03-15 10:01  BERT-master\
     文件          66  2019-03-15 10:01  BERT-master\.gitattributes
     文件        1316  2019-03-15 10:01  BERT-master\.gitignore
     文件        1430  2019-03-15 10:01  BERT-master\README.md
     文件        4134  2019-03-15 10:01  BERT-master\adam.py
     文件        5522  2019-03-15 10:01  BERT-master\bert.py
     文件        4687  2019-03-15 10:01  BERT-master\data.py
     文件        7028  2019-03-15 10:01  BERT-master\example_use.py
     文件         292  2019-03-15 10:01  BERT-master\example_use.sh
     文件        9862  2019-03-15 10:01  BERT-master\google_bert.py
     文件        2754  2019-03-15 10:01  BERT-master\preprocess.py
     目录           0  2019-03-15 10:01  BERT-master\toy\
     文件         323  2019-03-15 10:01  BERT-master\toy\gen.py
     文件      193086  2019-03-15 10:01  BERT-master\toy\sample_from_zhwiki
     文件        1883  2019-03-15 10:01  BERT-master\toy\train
     文件         110  2019-03-15 10:01  BERT-master\toy\vocab
     文件        6682  2019-03-15 10:01  BERT-master\train.py
     文件         831  2019-03-15 10:01  BERT-master\train.sh
     文件       10717  2019-03-15 10:01  BERT-master\transformer.py
     文件        1047  2019-03-15 10:01  BERT-master\utils.py

评论

共有 条评论