资源简介
在python中应用,要求有opencv3.4,运行就可以看到检测效果图
代码片段和文件信息
# USAGE
# python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument(“-p“ “--prototxt“default=“MobileNetSSD_deploy_0.prototxt“
help=“path to Caffe ‘deploy‘ prototxt file“)
ap.add_argument(“-m“ “--model“default=“MobileNetSSD_deploy_0.caffemodel“
help=“path to Caffe pre-trained model“)
ap.add_argument(“-c“ “--confidence“ type=float default=0.2
help=“minimum probability to filter weak detections“)
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect then generate a set of bounding box colors for each class
CLASSES = [“background“ “aeroplane“ “bicycle“ “bird“ “boat“
“bottle“ “bus“ “car“ “cat“ “chair“ “cow“ “diningtable“
“dog“ “horse“ “motorbike“ “person“ “pottedplant“ “sheep“
“sofa“ “train“ “tvmonitor“]
COLORS = np.random.uniform(0 255 size=(len(CLASSES) 3))
# load our serialized model from disk
print(“[INFO] loading model...“)
net2 = cv2.dnn.readNetFromCaffe(args[“prototxt“] args[“model“])
# net2=cv2.dnn.readNetFromCaffe(“VGG_SSD_300.prototxt““VGG_SSD_300.caffemodel“)
# net2=cv2.dnn.readNetFromTensorflow(“face.pb“)
# initialize the video stream allow the cammera sensor to warmup
# and initialize the FPS counter
print(“[INFO] starting video stream...“)
#vs = VideoStream(src=0).start()
# vs =cv2.VideoCapture(‘C:\\Users\\voidking\\Desktop\\real-time-object-detection\\test_video.flv‘)
# vs =cv2.VideoCapture(‘./test_video.flv‘)
# vs =cv2.VideoCapture(“video1.mp4“)
vs =cv2.VideoCapture(‘timg.jpg‘)
time.sleep(2.0)
fps = FPS().start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
#frame = vs.read()
#frame = imutils.resize(frame width=400)
# grab the frame from the threaded video file stream
(grabbedframe) = vs.read()
# if the frame was not grabbed then we have reached the end
# of the stream
if not grabbed:
break
frame = imutils.resize(frame width=800)
# grab the frame dimensions and convert it to a blob
(h w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame (300 300))
0.007843 (300 300) 127.5)
# pass the blob through the network and obtain the detections and
# predictions
net2.setInput(blob)
detections = net2.forward()
# print(np.max(detections[0]))
# print(detections)
# loop over the detections
for i in np.arange(0 detections.shape[2]):
# extract the confidence (i.e. probability) associated with
# the prediction
confidence = detections[0 0 i 2]
# filter out weak detections by ensuring the ‘confidence‘ is
# greater than the minimum confidence
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 288 2018-05-29 10:03 Detect\.idea\misc.xm
文件 276 2018-05-29 10:03 Detect\.idea\modules.xm
文件 398 2018-05-29 10:05 Detect\.idea\personDetect.iml
文件 8418 2018-05-29 11:23 Detect\.idea\workspace.xm
文件 23147564 2018-03-29 15:47 Detect\MobileNetSSD_deploy_0.caffemodel
文件 29353 2018-03-29 15:47 Detect\MobileNetSSD_deploy_0.prototxt
文件 4972 2018-11-07 16:56 Detect\real_time_ob
文件 57064 2018-11-06 20:25 Detect\timg.jpg
文件 4072 2018-11-07 15:56 Detect\yoloT.py
目录 0 2018-05-29 10:05 Detect\.idea\inspectionProfiles
目录 0 2018-05-29 11:23 Detect\.idea
目录 0 2018-11-07 16:55 Detect
----------- --------- ---------- ----- ----
23252405 12
相关资源
- deep learning with python 中文版的
- Automate the Boring Stuff with Python 原版PD
- python2.7 32位
- 精通Python自然语言处理
- Python深度学习(中文版) 超清带书签
- 人脸识别python实现源码功能丰富
- Python机器学习
- numpy-1.17.4-cp38-cp38-win_amd64.whl
- 源码python数据挖掘入门与实践源码
- Python数据科学手册(PDF)
- Python测试驱动开发:使用Django、Sele
- Python Data Analytics 无水印pdf 0分
- Deep Learning with Applications Using Python C
- 信用风险建模:理论基础、诊断工具
- Python编程导论(第2版).rar
- 图灵书籍(Python数据处理.pdf+代码)
- Python爬虫抓取东方财富网股票数据并
- Grokking Deep Learning 正式版pdf
- python游戏编程入门源代码
- 流畅的python-LucianoRamalho.pdf
- torch-1.1.0-cp36-cp36m-linux_aarch64.whl
- scipy-1.0.1-cp36-cp36m-win_amd64.whl
- 《Python机器学习及实践从零开始通往
- python基础教程第二版
- 流畅的Python 官方中文 高清完整.pdf版
- Head First Python(第2版)
- Python数据分析基础.pdf 清晰中文完整版
- numpy-1.18.1-cp38-cp38-win_amd64.zip
- 全套python ppt
- python数据分析之numpy-pandas-matplotlib-常
评论
共有 条评论