资源简介
Python深度学习实战 基于tensorflow和keras的聊天机器人以及人脸、物体和语音识别
代码片段和文件信息
# Import the OpenCV library
import cv2
# Initialize a face cascade using the frontal face haar cascade provided
# with the OpenCV2 library. This will be required for face detection in an
# image.
faceCascade = cv2.CascadeClassifier(‘haarcascade_frontalface_default.xml‘)
# The desired output width and height can be modified according to the needs.
OUTPUT_SIZE_WIDTH = 700
OUTPUT_SIZE_HEIGHT = 600
# Open the first webcam device
capture = cv2.VideoCapture(0)
# Create two opencv named windows for showing the input output images.
cv2.namedWindow(“base-image“ cv2.WINDOW_AUTOSIZE)
cv2.namedWindow(“result-image“ cv2.WINDOW_AUTOSIZE)
# Position the windows next to each other
cv2.moveWindow(“base-image“ 20 200)
cv2.moveWindow(“result-image“ 640 200)
# Start the window thread for the two windows we are using
cv2.startWindowThread()
rectangleColor = (0 100 255)
while(1):
# Retrieve the latest image from the webcam
rcfullSizebaseImage = capture.read()
# Resize the image to 520x420
baseImage= cv2.resize(fullSizebaseImage (520 420))
# Check if a key was pressed and if it was Q or q then destroy all
# opencv windows and exit the application stopping the infinite loop.
pressedKey = cv2.waitKey(2)
if (pressedKey == ord(‘Q‘)) | (pressedKey == ord(‘q‘)):
cv2.destroyAllWindows()
exit(0)
# Result image is the image we will show the user which is a
# combination of the original image captured from the webcam with the
# overlayed rectangle detecting the largest face
resultImage = baseImage.copy()
# We will be using gray colored image for face detection.
# So we need to convert the baseImage captured by webcam to a gray-based image
gray_image = cv2.cvtColor(baseImage cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(gray_image 1.3 5)
# As we are only interested in the ‘largest‘ face we need to
# calculate the largest area of the found rectangle.
# For this first initialize the required variables to 0.
maxArea = 0
x = 0
y = 0
w = 0
h = 0
# Loop over all faces found in the image and check if the area for this face is
# the largest so far
for(_x _y _w _h) in faces:
if _w * _h > maxArea:
x = _x
y = _y
w = _w
h = _h
maxArea = w * h
# If any face is found draw a rectangle around the largest face present in the picture
if maxArea > 0:
cv2.rectangle(resultImage (x-10 y-20)(x + w+10 y + h+20) rectangleColor 2)
# Since we want to show something larger on the screen than the
# original 520x420 we resize the image again
# Note that it would also be possible to keep the large version
# of the baseimage and make the result image a copy of this large
# base image and use the scaling factor to draw the rectangle
# at the right coordinates.
largeResult = cv2.resize(resultImage(OUTPUT_SIZE_WIDTH OUTPUT_SIZE_HEIGHT))
# Finally we show the images on the screen
cv2.imshow(“base-im
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\
文件 66 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\.gitattributes
文件 28610 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\9781484235157.jpg
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter10_RNN and LSTM in visual\
文件 58177 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter10_RNN and LSTM in visual\Time Series forcasting with lstm model.ipynb
文件 48119 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter10_RNN and LSTM in visual\sp500.csv
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter11_Speech to text and vice versa\
文件 14096 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter11_Speech to text and vice versa\Speech to Text API and Text to Speech.ipynb
文件 704556 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter11_Speech to text and vice versa\audio.wav
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter12_Developing Chatbots\
文件 72 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter12_Developing Chatbots\Removing Punctuations.ipynb
文件 72 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter12_Developing Chatbots\Removing Stopwords.ipynb
文件 26152 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter12_Developing Chatbots\TF-IDF and Word2Vec.ipynb
文件 72 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter12_Developing Chatbots\Tokenization.ipynb
文件 1393 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter12_Developing Chatbots\intent1.csv
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter13_Face Recognition\
文件 3062 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter13_Face Recognition\Face_Detection.py
文件 5288 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter13_Face Recognition\Face_Recognition.py
文件 6612 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter13_Face Recognition\Face_Tracking.py
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter1_Prerequisites of Deep Learning Numpy Pandas and Scikit-Learn\
文件 341456 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter1_Prerequisites of Deep Learning Numpy Pandas and Scikit-Learn\chapter1_summary.ipynb
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter2_Basics of Tensorflow\
文件 6190 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter2_Basics of Tensorflow\TFBasics.ipynb
文件 27538 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter2_Basics of Tensorflow\chapter2_summary.ipynb
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter3_Understanding and working on Keras\
文件 32446 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter3_Understanding and working on Keras\MLPMNIST.ipynb
文件 9107 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter3_Understanding and working on Keras\Softmax _RegressionB.ipynb
文件 34522 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter3_Understanding and working on Keras\chapter3_summary.ipynb
文件 13115488 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter3_Understanding and working on Keras\model.h5
文件 6564312 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter3_Understanding and working on Keras\modelWeight.h5
目录 0 2018-05-22 15:41 Deep-Learning-Apps-Using-Python-master\Chapter5_Regresson to MLP in Tensorflow\
............此处省略27个文件信息
相关资源
-
深度学习风格迁移(st
yle transfer) - Python深度学习(中文版) 超清带书签
- numpy-1.15.3-cp27-none-win_amd64.whl
- Python深度学习+2018中文版pdf+英文版p
- Python深度学习中文版
- Deep learning with python中文版
- 《neural networks and deep learning》《神经
- Python深度学习Deep Learning With Python中文
- tensorflow1.12.0及其依赖库离线安装包
- Keras快速上手基于Python的深度学习实战
- 机器学习scikit-learn 库
- 《深度学习入门:基于Python的理论与
- ENAS PyTorch高效神经网络结构搜索 项目
- python深度学习深度学习入门python.rar
- 文字版pdf书和源代码:深度学习入门
- 深度学习入门:基于Python的理论与实
- poetryRNN诗人
- 吴恩达深度学习作业代码官方答案.
- win10+anaconda3+python3 mnist训练代码
- 深度学习入门:基于Python的理论与实
- 《Python深度学习》2018中文
- 《Python深度学习》中文版pdf+英文版
- 《Python深度学习》(Deep Learning With
- Python-使用遗传算法和深度学习训练
- python深度学习带目录高清pdf
- 深度学习入门:基于Python的理论和实
- 《Deep Learning With Python》中文版+英文版
- Python深度学习pdf
- 深度学习入门:基于Python的理论与实
- 深度学习入门:基于Python的理论与实
评论
共有 条评论