资源简介
【核心代码】
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data ##number 1 to 10 mnist = input_data.read_data_sets("MNIST_data",one_hot = True) def add_layer(input, in_size, out_size, activation_function = None): Wights = tf.Variable(tf.random_normal([in_size,out_size])) biases = tf.Variable(tf.zeros([1,out_size]) 0.1) Wx_plus_b = tf.matmul(input,Wights) biases if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs def compute_accuracy(v_xs,v_ys):##估计准确度 global prediction y_pre = sess.run(prediction,feed_dict={xs:v_xs})##预测值 correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1)) accurary = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) result = sess.run(accurary,feed_dict={xs:v_xs,ys:v_ys}) return result ##define placeholder for inputs to network xs = tf.placeholder(tf.float32,[None,784])###28*28 784个像素点 ys = tf.placeholder(tf.float32,[None,10]) ##add output layer prediction = add_layer(xs,784,10,activation_function=tf.nn.softmax) ##the error between prediction and real data cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction), reduction_indices=[1]))##loss train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session() if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1: init = tf.initialize_all_variables() else: init = tf.global_variables_initializer() sess.run(init) for i in range(1000): batch_xs,batch_ys = mnist.train.next_batch(100)##每次提取100个数据 sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys}) if i%50 == 0: print(compute_accuracy(mnist.test.images,mnist.test.labels))
代码片段和文件信息
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
##number 1 to 10
mnist = input_data.read_data_sets(“MNIST_data“one_hot = True)
def add_layer(input in_size out_size activation_function = None):
Wights = tf.Variable(tf.random_normal([in_sizeout_size]))
biases = tf.Variable(tf.zeros([1out_size])+0.1)
Wx_plus_b = tf.matmul(inputWights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
def compute_accuracy(v_xsv_ys):##估计准确度
global prediction
y_pre = sess.run(predictionfeed_dict={xs:v_xs})##预测值
correct_prediction = tf.equal(tf.argmax(y_pre1)tf.argmax(v_ys1))
accurary = tf.reduce_mean(tf.cast(correct_pr
评论
共有 条评论