-
大小: 2KB文件类型: .rar金币: 1下载: 0 次发布日期: 2021-04-16
- 语言: Python
- 标签: lstm tensorflow2 LSTM实现 TensorFlow tensorflow2.
资源简介
tensorflow2.0的Lstm实现
代码片段和文件信息
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
tf.random.set_seed(22)
np.random.seed(22)
os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘
assert tf.__version__.startswith(‘2.‘)
batchsz = 128
# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train y_train) (x_test y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b 80]
# x_test: [b 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test maxlen=max_review_len)
db_train = tf.data.Dataset.from_tensor_slices((x_train y_train))
db_train = db_train.shuffle(1000).batch(batchsz drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test y_test))
db_test = db_test.batch(batchsz drop_remainder=True)
print(‘x_train shape:‘ x_train.shape tf.reduce_max(y_train) tf.reduce_min(y_train))
print(‘x_test shape:‘ x_test.shape)
class MyRNN(keras.Model):
def __init__(self units):
super(MyRNN self).__init__()
# [b 64]
self.state0 = [tf.zeros([batchsz units])tf.zeros([batchsz units])]
self.state1 = [tf.zeros([batchsz units])tf.zeros([batchsz units])]
# transform text to embedding representation
# [b 80] => [b 80 100]
self.embedding = layers.embedding(total_words embedding_len
input_length=max_review_len)
# [b 80 100] h_dim: 64
# RNN: cell1 cell2 cell3
# SimpleRNN
# self.rnn_cell0 = layers.SimpleRNNCell(units dropout=0.5)
# self.rnn_cell1 = layers.SimpleRNNCell(units dropout=0.5)
self.rnn_cell0 = layers.LSTMCell(units dropout=0.5)
self.rnn_cell1 = layers.LSTMCell(units dropout=0.5)
# fc [b 80 100] => [b 64] => [b 1]
self.outlayer = layers.Dense(1)
def call(self inputs training=None):
“““
net(x) net(x training=True) :train mode
net(x training=False): test
:param inputs: [b 80]
:param training:
:return:
“““
# [b 80]
x = inputs
# embedding: [b 80] => [b 80 100]
x = self.embedding(x)
# rnn cell compute
# [b 80 100] => [b 64]
state0 = self.state0
state1 = self.state1
for word in tf.unstack(x axis=1): # word: [b 100]
# h1 = x*wxh+h0*whh
# out0: [b 64]
out0 state0 = self.rnn_cell0(word state0 training)
# out1: [b 64]
out1 state1 = self.rnn_cell1(out0 state1 training)
# out: [b 64] => [b 1]
x = self.outlayer(out1)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
def main():
units = 64
epochs = 4
import time
t0 = time.time()
model = MyRNN(units)
model.compile(optimizer = keras.optimizer
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2868 2020-02-16 15:57 lstm_sentiment_analysis_la
文件 3330 2020-02-16 15:57 lstm_sentiment_analysis_cell.py
----------- --------- ---------- ----- ----
6198 2
- 上一篇:官方Python上位机
- 下一篇:tradaboost
评论
共有 条评论