资源简介
计算机图形学几何算法源码包,如下: 目录 ㈠ 点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形面积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共面积: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线段的左右旋: 31 13.公式: 32
代码片段和文件信息
/*
计算几何
目录
㈠ 点的基本运算
1. 平面上两点之间距离 1
2. 判断两点是否重合 1
3. 矢量叉乘 1
4. 矢量点乘 2
5. 判断点是否在线段上 2
6. 求一点饶某点旋转后的坐标 2
7. 求矢量夹角 2
㈡ 线段及直线的基本运算
1. 点与线段的关系 3
2. 求点到线段所在直线垂线的垂足 4
3. 点到线段的最近点 4
4. 点到线段所在直线的距离 4
5. 点到折线集的最近距离 4
6. 判断圆是否在多边形内 5
7. 求矢量夹角余弦 5
8. 求线段之间的夹角 5
9. 判断线段是否相交 6
10.判断线段是否相交但不交在端点处 6
11.求线段所在直线的方程 6
12.求直线的斜率 7
13.求直线的倾斜角 7
14.求点关于某直线的对称点 7
15.判断两条直线是否相交及求直线交点 7
16.判断线段是否相交,如果相交返回交点 7
㈢ 多边形常用算法模块
1. 判断多边形是否简单多边形 8
2. 检查多边形顶点的凸凹性 9
3. 判断多边形是否凸多边形 9
4. 求多边形面积 9
5. 判断多边形顶点的排列方向,方法一 10
6. 判断多边形顶点的排列方向,方法二 10
7. 射线法判断点是否在多边形内 10
8. 判断点是否在凸多边形内 11
9. 寻找点集的graham算法 12
10.寻找点集凸包的卷包裹法 13
11.判断线段是否在多边形内 14
12.求简单多边形的重心 15
13.求凸多边形的重心 17
14.求肯定在给定多边形内的一个点 17
15.求从多边形外一点出发到该多边形的切线 18
16.判断多边形的核是否存在 19
㈣ 圆的基本运算
1 .点是否在圆内 20
2 .求不共线的三点所确定的圆 21
㈤ 矩形的基本运算
1.已知矩形三点坐标,求第4点坐标 22
㈥ 常用算法的描述 22
㈦ 补充
1.两圆关系: 24
2.判断圆是否在矩形内: 24
3.点到平面的距离: 25
4.点是否在直线同侧: 25
5.镜面反射线: 25
6.矩形包含: 26
7.两圆交点: 27
8.两圆公共面积: 28
9. 圆和直线关系: 29
10. 内切圆: 30
11. 求切点: 31
12. 线段的左右旋: 31
13.公式: 32
*/
/* 需要包含的头文件 */
#include
/* 常用的常量定义 */
const double INF = 1E200
const double EP = 1E-10
const int MAXV = 300
const double PI = 3.14159265
/* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0 double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
LINESEG(POINT a POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1 double d2=-1 double d3=0) {a=d1; b=d2; c=d3;}
};
/**********************
* *
* 点的基本运算 *
* *
**********************/
double dist(POINT p1POINT p2) // 返回两点之间欧氏距离
{
return( sqrt( (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) ) );
}
bool equal_point(POINT p1POINT p2) // 判断两个点是否重合
{
return ( (abs(p1.x-p2.x) }
/******************************************************************************
r=multiply(spepop)得到(sp-op)和(ep-op)的叉积
r>0:ep在矢量opsp的逆时针方向;
r=0:opspep三点共线;
r<0:ep在矢量opsp的顺时针方向
*******************************************************************************/
double multiply(POINT spPOINT epPOINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
/*
r=dotmultiply(p1p2op)得到矢量(p1-op)和(p2-op)的点积,如果两个矢量都非零矢量
r<0:两矢量夹角为锐角;
r=0:两矢量夹角为直角;
r>0:两矢量夹角为钝角
*******************************************************************************/
double dotmultiply(POINT p1POINT p2POINT p0)
{
return ((p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y));
}
/******************************************************************************
判断点p是否在线段l上
条件:(p在线段l所在的直线上) && (点p在以线段l为对角线的矩形内)
*************************************************************************
- 上一篇:Bulls and Cows C++
- 下一篇:线性回归c++实现
相关资源
- 线性回归c++实现
- Bulls and Cows C++
- 常用数据校验源代码CRC8 CRC16 和校验
- vc++编写的界面源代码
- c++实现四则运算器源码 支持括号
- VC++注册码加密源程序含注册机、解密
- USB 通讯 libusb-win32
- 数据结构类库c++版
- 维吉尼亚加密解密C++实现
- 又一个douglas道格拉斯VC++算法
- 一个双色球彩票随机选号器6+1C++源码
- 家庭收支管理系统基于VC++ ACCESS数据库
- C++实现双向链表完整代码
- 东北大学C++实验报告
- 朱战立《面向对象的程序设计与C++语
- UE4C++游戏视频教程
- 掌纹识别c/c++代码
- 功能非常全的数字图像处理程序含源
- C++ DES图像加密与解密
- 传智播客c/c++教程
- 家庭财务系统,可在devc++上直接运行
- 特殊矩阵和压缩存储
- 雅可比迭代C++实现
- 传智播客c++视频
- 发现网络中的活动主机 网络应用课程
- 货品的进销存管理系统,MFC编译
- VC++磁盘MBR读写程序,测试通过
- NSGA2源代码,C++源代码
- C++的库函数
- C++矩阵变换
评论
共有 条评论