资源简介

计算机图形学几何算法源码包,如下: 目录 ㈠ 点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形面积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共面积: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线段的左右旋: 31 13.公式: 32

资源截图

代码片段和文件信息

/*
计算几何



目录 


㈠ 点的基本运算 
1. 平面上两点之间距离 1 
2. 判断两点是否重合 1 
3. 矢量叉乘 1 
4. 矢量点乘 2 
5. 判断点是否在线段上 2 
6. 求一点饶某点旋转后的坐标 2 
7. 求矢量夹角 2 

㈡ 线段及直线的基本运算 
1. 点与线段的关系 3 
2. 求点到线段所在直线垂线的垂足 4 
3. 点到线段的最近点 4 
4. 点到线段所在直线的距离 4 
5. 点到折线集的最近距离 4 
6. 判断圆是否在多边形内 5 
7. 求矢量夹角余弦 5 
8. 求线段之间的夹角 5 
9. 判断线段是否相交 6 
10.判断线段是否相交但不交在端点处 6 
11.求线段所在直线的方程 6 
12.求直线的斜率 7 
13.求直线的倾斜角 7 
14.求点关于某直线的对称点 7 
15.判断两条直线是否相交及求直线交点 7 
16.判断线段是否相交,如果相交返回交点 7 

㈢ 多边形常用算法模块 
1. 判断多边形是否简单多边形 8 
2. 检查多边形顶点的凸凹性 9 
3. 判断多边形是否凸多边形 9 
4. 求多边形面积 9 
5. 判断多边形顶点的排列方向,方法一 10 
6. 判断多边形顶点的排列方向,方法二 10 
7. 射线法判断点是否在多边形内 10 
8. 判断点是否在凸多边形内 11 
9. 寻找点集的graham算法 12 
10.寻找点集凸包的卷包裹法 13 
11.判断线段是否在多边形内 14 
12.求简单多边形的重心 15 
13.求凸多边形的重心 17 
14.求肯定在给定多边形内的一个点 17 
15.求从多边形外一点出发到该多边形的切线 18 
16.判断多边形的核是否存在 19 

㈣ 圆的基本运算 
1 .点是否在圆内 20 
2 .求不共线的三点所确定的圆 21 

㈤ 矩形的基本运算 
1.已知矩形三点坐标,求第4点坐标 22 

㈥ 常用算法的描述 22 

㈦ 补充 
1.两圆关系: 24 
2.判断圆是否在矩形内: 24 
3.点到平面的距离: 25 
4.点是否在直线同侧: 25 
5.镜面反射线: 25 
6.矩形包含: 26 
7.两圆交点: 27 
8.两圆公共面积: 28 
9. 圆和直线关系: 29 
10. 内切圆: 30 
11. 求切点: 31 
12. 线段的左右旋: 31 
13.公式: 32 
*/
/* 需要包含的头文件 */ 
#include  

/* 常用的常量定义 */ 
const double INF = 1E200    
const double EP = 1E-10 
const int MAXV = 300 
const double PI = 3.14159265 

/* 基本几何结构 */ 
struct POINT 

double x; 
double y; 
POINT(double a=0 double b=0) { x=a; y=b;} //constructor 
}; 
struct LINESEG 

POINT s; 
POINT e; 
LINESEG(POINT a POINT b) { s=a; e=b;} 
LINESEG() { } 
}; 
struct LINE           // 直线的解析方程 a*x+b*y+c=0  为统一表示,约定 a >= 0 

   double a; 
   double b; 
   double c; 
   LINE(double d1=1 double d2=-1 double d3=0) {a=d1; b=d2; c=d3;} 
}; 

/**********************
 *                    * 
 *   点的基本运算     * 
 *                    * 
 **********************/ 

double dist(POINT p1POINT p2)                // 返回两点之间欧氏距离 

return( sqrt( (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) ) ); 

bool equal_point(POINT p1POINT p2)           // 判断两个点是否重合  

return ( (abs(p1.x-p2.x)
/****************************************************************************** 
r=multiply(spepop)得到(sp-op)和(ep-op)的叉积 
r>0:ep在矢量opsp的逆时针方向; 
r=0:opspep三点共线; 
r<0:ep在矢量opsp的顺时针方向 
*******************************************************************************/ 
double multiply(POINT spPOINT epPOINT op) 

return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y)); 

/* 
r=dotmultiply(p1p2op)得到矢量(p1-op)和(p2-op)的点积,如果两个矢量都非零矢量 
r<0:两矢量夹角为锐角;
r=0:两矢量夹角为直角;
r>0:两矢量夹角为钝角 
*******************************************************************************/ 
double dotmultiply(POINT p1POINT p2POINT p0) 

return ((p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y)); 

/****************************************************************************** 
判断点p是否在线段l上
条件:(p在线段l所在的直线上) && (点p在以线段l为对角线的矩形内)
*************************************************************************

评论

共有 条评论