资源简介
matlab代码,宽度学习matlab代码,宽度学习matlab代码

代码片段和文件信息
import numpy as np
from sklearn import preprocessing
from numpy import random
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
def show_accuracy(predictLabelLabel):
Label = np.ravel(Label).tolist()
predictLabel = predictLabel.tolist()
count = 0
for i in range(len(Label)):
if Label[i] == predictLabel[i]:
count += 1
return (round(count/len(Label)5))
class node_generator:
def __init__(selfwhiten = False):
self.Wlist = []
self.blist = []
self.nonlinear = 0
self.whiten = whiten
def sigmoid(selfdata):
return 1.0/(1+np.exp(-data))
def linear(selfdata):
return data
def tanh(selfdata):
return (np.exp(data)-np.exp(-data))/(np.exp(data)+np.exp(-data))
def relu(selfdata):
return np.maximum(data0)
def orth(selfW):
for i in range(0W.shape[1]):
w = np.mat(W[:i].copy()).T
w_sum = 0
for j in range(i):
wj = np.mat(W[:j].copy()).T
w_sum += (w.T.dot(wj))[00]*wj
w -= w_sum
w = w/np.sqrt(w.T.dot(w))
W[:i] = np.ravel(w)
return W
def generator(selfshapetimes):
for i in range(times):
W = 2*random.random(size=shape)-1
if self.whiten == True:
W = self.orth(W)
b = 2*random.random()-1
yield (Wb)
def generator_nodes(self data times batchsize nonlinear):
self.Wlist = [elem[0] for elem in self.generator((data.shape[1]batchsize)times)]
self.blist = [elem[1] for elem in self.generator((data.shape[1]batchsize)times)]
self.nonlinear = {‘linear‘:self.linear
‘sigmoid‘:self.sigmoid
‘tanh‘:self.tanh
‘relu‘:self.relu
}[nonlinear]
nodes = self.nonlinear(data.dot(self.Wlist[0])+self.blist[0])
for i in range(1len(self.Wlist)):
nodes = np.column_stack((nodes self.nonlinear(data.dot(self.Wlist[i])+self.blist[i])))
return nodes
def transform(selftestdata):
testnodes = self.nonlinear(testdata.dot(self.Wlist[0])+self.blist[0])
for i in range(1len(self.Wlist)):
testnodes = np.column_stack((testnodes self.nonlinear(testdata.dot(self.Wlist[i])+self.blist[i])))
return testnodes
def update(selfotherW otherb):
self.Wlist += otherW
self.blist += otherb
class scaler:
def __init__(self):
self._mean = 0
self._std = 0
def fit_transform(selftraindata):
self._mean = traindata.mean(axis = 0)
self._std = traindata.std(axis = 0)
return (traindata-self._mean)/self._std
def transform(selftestdata):
return (testdata-self._mean)/self.
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-06-19 10:37 Broad-Learning-System-master\
文件 1203 2018-06-19 10:37 Broad-Learning-System-master\.gitignore
目录 0 2018-06-19 10:37 Broad-Learning-System-master\BroadLearning\
文件 6927 2018-06-19 10:37 Broad-Learning-System-master\BroadLearning\bls.py
文件 11338 2018-06-19 10:37 Broad-Learning-System-master\BroadLearning\bls_addinput.py
文件 8632 2018-06-19 10:37 Broad-Learning-System-master\BroadLearning\bls_enhence.py
文件 9265 2018-06-19 10:37 Broad-Learning-System-master\BroadLearning\bls_enhmap.py
文件 8465 2018-06-19 10:37 Broad-Learning-System-master\BroadLearning\bls_mapping.py
文件 1073 2018-06-19 10:37 Broad-Learning-System-master\LICENSE
文件 33 2018-06-19 10:37 Broad-Learning-System-master\README.md
相关资源
- MATLAB 经典程序源代码大全
- MATLAB小波软阈值去噪代码33473
- 《MATLAB 智能算法超级学习手册》-程序
- 读取txt文件内容matlab代码实现
- 算术编码解码matlab源代码
- OFDM系统MATLAB仿真代码
- 图像小波变换MatLab源代码
- 细胞图像分割matlab代码
- 基于MP的时频分析MATLAB代码
- 工程优化问题的Matlab实现代码
- WCDMA matlab代码
- 数字图像处理radon matlab变换算法代码
- 数字信号处理 理论算法与实现 胡广书
- 激光谐振腔课程设计(matlab)exe及源
- 基于harris算法的角点检测matlab原代码
- 北邮Matlab实验报告和代码
- 图像降噪Matlab代码
- matlab人脸识别和特征提取
- 圣诞树(matlab代码)
- 心音信号处理分析(附matlab代码)
- Pattern Recognition and Machine Learning(高清
- 均值滤波和FFT频谱分析Matlab代码
- 《MATLAB扩展编程》代码
- 多目标跟踪 论文+代码
- 欧拉放大论文及matlab代码
- 蚁群算法论文+源代码
- GPS信号的码捕获matlab代码.7z
- 一维光子晶体MATLAB仿真代码吸收率折
- matlab读取SP3文件
- 手把手教你学DSP--基于TMS320C55x光盘 含
评论
共有 条评论