资源简介
压缩感知的稀疏重构中广泛应用的正交匹配追踪(OMP)算法matlab程序,该算法由香港大学电子工程系 沙威老师开发,代码注释详细,便于读者理解。已测试,可以正常运行。读者通过代码可以加深对该算法以及压缩感知、稀疏重构的认识。
压缩感知的稀疏重构中广泛应用的正交匹配追踪(OMP)算法matlab程序,该算法由香港大学电子工程系 沙威老师开发,代码注释详细,便于读者理解。已测试,可以正常运行。读者通过代码可以加深对该算法以及压缩感知、稀疏重构的认识。
代码片段和文件信息
% 1-D信号压缩传感的实现(正交匹配追踪法Orthogonal Matching Pursuit)
% 测量数M>=K*log(N/K)K是稀疏度N信号长度可以近乎完全重构
% 编程人--香港大学电子工程系 沙威 Email: wsha@eee.hku.hk
% 编程时间:2008年11月18日
% 文档下载: http://www.eee.hku.hk/~wsha/Freecode/freecode.htm
% 参考文献:Joel A. Tropp and Anna C. Gilbert
% Signal Recovery From Random Measurements Via Orthogonal Matching
% Pursuit,IEEE TRANSACTIONS ON INFORMATION THEORY VOL. 53 NO. 12
% DECEMBER 2007.
clc;clear
%% 1. 时域测试信号生成
K=7; % 稀疏度(做FFT可以看出来)
N=256; % 信号长度
M=64; % 测量数(M>=K*log(N/K)至少40但有出错的概率)
f1=50; % 信号频率1
f2=100; % 信号频率2
f3=200; % 信号频率3
f4=400; % 信号频率4
fs=800; % 采样频率
ts=1/fs; % 采样间隔
Ts=1:N; % 采样序列
x=0.3*cos(2*pi*f1*Ts*ts)+0.6*cos(2*pi*f2*Ts*ts)+0.1*cos(2*pi*f3*Ts*ts)+0.9*cos(2*pi*f4*Ts*ts); % 完整信号
%% 2. 时域信号压缩传感
Phi=randn(MN); % 测量矩阵(高斯分布白噪声)
s=Phi*x.‘; % 获得线性测量
%% 3. 正交匹配追踪法重构信号(本质上是L_1范数最优化问题)
m=2*K; % 算法迭代次数(m>=K)
Psi=fft(eye(NN))/sqrt(N); % 傅里叶正变换矩阵
T=Phi*Psi‘; % 恢复矩阵(测量矩阵*正交反变换矩阵)
hat_y=zeros(1N); % 待重构的谱域(变换域)向量
Aug_t=[]; % 增量矩阵(初始值为空矩阵)
r_n=s; % 残差值
for times=1:m; % 迭代次数(有噪声的情况下该迭代次数为K)
for col=1:N; % 恢复矩阵的所有列向量
product(col)=abs(T(:col)‘*r_n); % 恢复矩阵的列向量和残差的投影系数(内积值)
end
[valpos]=max(product); % 最大投影系数对应的位置
Aug_t=[Aug_tT(:pos)]; % 矩阵扩充
T(:pos)=zeros(M1); % 选中的列置零(实质上应该去掉,为了简单我把它置零)
aug_y=(Aug_t‘*Aug_t)^(-1)*Aug_t‘*s; % 最小二乘使残差最小
r_n=s-Aug_t*aug_y; % 残差
pos_array(times)=pos; % 纪录最大投影系数的位置
end
hat_y(pos_array)=aug_y; % 重构的谱域向量
hat_x=real(Psi‘*hat_y.‘); % 做逆傅里叶变换重构得到时域信号
%% 4. 恢复信号和原始信号对比
figure(1);
hold on;
plot(hat_x‘k.-‘) % 重建信号
plot(x‘r‘) % 原始信号
legend(‘Recovery‘‘Original‘)
norm(hat_x.‘-x)/norm(x) % 重构误差
- 上一篇:SVD算法的MATLAB代码
- 下一篇:多目标优化遗传算法
评论
共有 条评论