资源简介
elm回归及分类:ELM是一种简单易用、有效的单隐层前馈神经网络SLFNs学习算法。2004年由南洋理工大学黄广斌副教授提出。传统的神经网络学习算法(如BP算法)需要人为设置大量的网络训练参数,并且很容易产生局部最优解。极限学习机只需要设置网络的隐层节点个数,在算法执行过程中不需要调整网络的输入权值以及隐元的偏置,并且产生唯一的最优解,因此具有学习速度快且泛化性能好的优点。
代码片段和文件信息
function [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
% Usage: elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
% OR: [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
%
% Input:
% TrainingData_File - Filename of training data set
% TestingData_File - Filename of testing data set
% Elm_Type - 0 for regression; 1 for (both binary and multi-classes) classification
% NumberofHiddenNeurons - Number of hidden neurons assigned to the ELM
% ActivationFunction - Type of activation function:
% ‘sig‘ for Sigmoidal function
% ‘sin‘ for Sine function
% ‘hardlim‘ for Hardlim function
% ‘tribas‘ for Triangular basis function
% ‘radbas‘ for Radial basis function (for additive type of SLFNs instead of RBF type of SLFNs)
%
% Output:
% TrainingTime - Time (seconds) spent on training ELM
% TestingTime - Time (seconds) spent on predicting ALL testing data
% TrainingAccuracy - Training accuracy:
% RMSE for regression or correct classification rate for classification
% TestingAccuracy - Testing accuracy:
% RMSE for regression or correct classification rate for classification
%
% MULTI-CLASSE CLASSIFICATION: NUMBER OF OUTPUT NEURONS WILL BE AUTOMATICALLY SET EQUAL TO NUMBER OF CLASSES
% FOR EXAMPLE if there are 7 classes in all there will have 7 output
% neurons; neuron 5 has the highest output means input belongs to 5-th class
%
% Sample1 regression: [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(‘sinc_train‘ ‘sinc_test‘ 0 20 ‘sig‘)
% Sample2 classification: elm(‘diabetes_train‘ ‘diabetes_test‘ 1 20 ‘sig‘)
%
%%%% Authors: MR QIN-YU ZHU AND DR GUANG-BIN HUANG
%%%% NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE
%%%% EMAIL: EGBHUANG@NTU.EDU.SG; GBHUANG@IEEE.ORG
%%%% WEBSITE: http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
%%%% DATE: APRIL 2004
%%%%%%%%%%% Macro definition
REGRESSION=0;
CLASSIFIER=1;
%%%%%%%%%%% Load training dataset
train_data=load(TrainingData_File);
T=train_data(:1)‘;
P=train_data(:2:size(train_data2))‘;
clear train_data; % Release raw training data array
%%%%%%%%%%% Load testing dataset
test_data=load(TestingData_File);
TV.T=test_data(:1)‘;
TV.P=test_data(:2:size(test_data2))‘;
clear test_data; % Release raw testing data array
NumberofTrainingData=size(P2);
NumberofTestingData=size(TV.P2);
NumberofInputNeurons=size(P1);
if Elm_T
- 上一篇:MATLAB录音程序:动态波形频谱显示
- 下一篇:稀疏自动编码器的matlab实现
相关资源
- 基于神经网络的ASK 解调器及性能研究
- 改进过的神经网络elm算法.m
- GA-ELM.rar
- 极限学习机ELM 算法及MATLAB程序实现
- 基于Elman神经网络的房价预测matlab脚本
- ELM回归预测matlab版code
- PSO-ELM源码
- GA-ELM(matlab源码)
- Helmholtz方程的有限元解法.
- elman load forecast
- ELM kernel 基于极限学习机的不平衡数据
- BP and ELM BP神经网络与ELM神经网络算法
- ELM算法进行遥感图像分类
- 极限学习机elm的神经网络模型的源代
- ELM原理和分类问题中的应用
- 使用BP神经元网络、ELM分类分类实例(
- ELM 极限学习机matlab以及Python程序
- SS-US-ELM 最新极限学习机程序
- ELM_kernel 核极限学习机
- 极端学习机分类(ELM)函数
- ELM 极限学习机在matlab中elm函数调用示
- elmtrain 将整个数据集中的103个样本随
- elmd 在lmd中加入白噪声对信号进行分析
- elm极限学习机预测风速
- MATLAB采用ELM进行回归和预测代码
- Elman神经网络法预测风电功率 (elma
- 核函数的ELM算法
- EELM
- ELMAN 详细介绍了ELMAN这种神经网络的构
- ELMPliterature 极限学习机matlab源码及对
评论
共有 条评论