资源简介
在激光通信中,对于天线阵列,三维方向图能够帮助研究算法以提高通信的可靠!
代码片段和文件信息
%%%%%%当波束指向阵面法向时的天线方向图
%在波束指向阵面法向时的最大增益值27dB
A=27;
%在波束指向阵面法向时的第一副瓣的增益值-1dB
B=-1;
%在波束指向阵面法向时的第一零深-30dB
C=-30;
%在波束指向阵面法向时的半功率点(3dB)宽度(rad)
B_0=1.54*pi/180;
%在波束指向阵面法向时的第一零点(rad)
alpha_1=1.5*pi/180;
%在波束指向阵面法向时的第一旁瓣的峰值所在角度(rad)
alpha_1_5=2.5*pi/180;
%波束指向,方位角rad
alpha_0=60*pi/180;
%波束指向,方位角rad
beta_0=60*pi/180;
%比例系数0 epsilon=0.4;
eta=0.5;
%相控阵天线波束增益随扫描角变化的控制因子
K_0=cos(alpha_0)*cos(beta_0)/(sqrt((cos(alpha_0))^2+(cos(beta_0))^2*(sin(alpha_0))^2));
%加权系数
p=0;
%没有给出计算式,假定的
d_beta=0.004;
%相控阵天线波束随扫描角展宽控制因子,可描述为
M_0=p*d_beta^2+(4-4*K_0-p*B_0^2)*d_beta/(2*B_0)+K_0;
%NewtonDown为牛顿下山法,可在Matlab书籍中找到,这里直接给出了计算结果
%TwoStep为两步迭代法,可在Matlab书籍中找到,这里直接给出了计算结果
%%%%%%%%% 计算sin(x)=0.707*x%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% x_0(1)=NewtonDown(‘sin(x)-x*0.707‘-1.57-11.0e-4);
% x_0(2)=0;
% x_0(3)=NewtonDown(‘sin(x)-x*0.707‘11.571.0e-4);
x_0=[-1.391801.3918];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 计算sin(x)=x*C/B %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% k=1;
% for i=0:3
% a1=0+i*2*pi;
% b1=pi/2+i*2*pi;
% x2(k)=TwoStep(‘sin(x)-x*10^(-1.45)‘a1b111.0e-4);
% k=k+1;
% a2=pi*0.5959+i*2*pi;
% b2=pi+i*2*pi;
% x2(k)=NewtonDown(‘sin(x)-x*10^(-1.45)‘a2b21.0e-4);
% k=k+1;
% end
% i=4;
% a1=0+i*2*pi;
% b1=pi/2+i*2*pi;
% x2(k)=TwoStep(‘sin(x)-x*10^(-1.45)‘a1b111.0e-4);
% k=k+1;
% a2=pi/2+0.0001*pi+i*2*pi;
% b2=pi+i*2*pi;
% x2(k)=NewtonDown(‘sin(x)-x*10^(-1.45)‘a2b21.0e-4);
% j=1;
% while (k>1)
% x22(j)=-x2(k);
% j=j+1;
% k=k-1;
% end
% x_2=cat(2x22x2);
x_2=[-26.995-26.3398-21.1428-19.6195-15.1408-13.0477-9.0962-6.5165-3.033703.03376.51659.096213.047715.140819.619521.142826.339826.995];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%计算 sin(x)=x*C/(0.707*A)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% k=1;
% for i=0:75
% a1=0+i*2*pi;
% b1=pi/2+i*2*pi;
% x1(k)=TwoStep(‘sin(x)-x*10^(-2.85)/0.707‘a1b111.0e-4);
% k=k+1;
% a2=pi*0.5959+i*2*pi;
% b2=pi+i*2*pi;
% x1(k)=NewtonDown(‘sin(x)-x*10^(-2.85)/0.707‘a2b21.0e-4);
% k=k+1;
% end
%
% for i=76:79
% a1=0+i*2*pi;
% b1=pi/2-0.0001*pi+i*2*pi;
% x1(k)=TwoStep(‘sin(x)-x*10^(-2.85)/0.707‘a1b111.0e-4);
% k=k+1;
% a2=pi/2+0.00001*pi+i*2*pi;
% b2=pi+i*2*pi;
% x1(k)=NewtonDown(‘sin(x)-x*10^(-2.85)/0.707‘a2b21.0e-4);
% k=k+1;
% end
% j=1;
% k=k-1;
% while (k>1)
% x11(j)=-x1(k);
% j=j+1;
% k=k-1;
% end
% x_1=cat(2x11x1);
x_1=[-498.0419-497.8389-491.8457-491.4688-485.6207-485.1274-479.3845-478.7972-473.142-472.4734-466.8951-466.1538-460.6452-459.8374-454.3928-453.5233-448.1385-447.2112-441.8827-440.9007-435.6255-434.5915-429.3671-428.2835-423.1078-421.9764-416.8476-415.6702-410.5867-409.3648-404.
- 上一篇:最小二乘法与 最大似然法的参数辨识
- 下一篇:蒙特卡洛源程序
评论
共有 条评论