资源简介
时间序列ARMA模型源代码
代码片段和文件信息
clear;
%--------------------------------油价序列零均值化后的数据如下----------------------------------------%:
P=[ 19.5900 14.9100 15.7400 15.4000 13.0600 19.0700 15.2800 15.8200 12.7700 12.0500...
11.6900 13.8500 13.8500 10.0700 9.1700 10.7900 13.4400 21.1700 18.6400 13.2100...
15.5400 21.9400 23.1100 18.6400 14.9400 16.9000 15.4600 11.1500 13.1300 12.4800...
12.9500 12.5900 10.5800 10.5800 12.3900 15.5300 13.0600 10.2200 16.3300 19.7200...
21.3100 18.8400 24.8400 15.6700 15.5700 12.7300 13.5600 15.5400 17.2200 12.1400...
11.0700 12.0200 11.5500 6.9200 10.3300 8.3800 12.1100 11.4600 12.7500 13.3200...
13.0000 11.9000 11.7900 12.5500 11.8400 11.2500 11.1500 10.9900 11.7000 14.0100...
17.5100 17.2700 16.9000 15.7900 15.4500 6.2400 16.7100 16.7700 16.6400 17.8000...
16.8700 16.1300 15.7600 15.6600 15.5400 15.3000 15.0500 14.6900 14.3900 14.1800...
13.70 13.66 13.27 13.56 13.14 14.19 ];
F=[ 19.5900 14.9100 15.7400 15.4000 13.0600 19.0700 15.2800 15.8200 12.7700 12.0500...
11.6900 13.8500 13.8500 10.0700 9.1700 10.7900 13.4400 21.1700 18.6400 13.2100...
15.5400 21.9400 23.1100 18.6400 14.9400 16.9000 15.4600 11.1500 13.1300 12.4800...
12.9500 12.5900 10.5800 10.5800 12.3900 15.5300 13.0600 10.2200 16.3300 19.7200...
21.3100 18.8400 24.8400 15.6700 15.5700 12.7300 13.5600 15.5400 17.2200 12.1400...
11.0700 12.0200 11.5500 6.9200 10.3300 8.3800 12.1100 11.4600 12.7500 13.3200...
13.0000 11.9000 11.7900 12.5500 11.8400 11.2500 11.1500 10.9900 11.7000 14.0100...
17.5100 17.2700 16.9000 15.7900 15.4500 6.2400 16.7100 16.7700 16.6400 17.8000...
16.8700 16.1300 15.7600 15.6600 15.5400 15.3000 15.0500 14.6900 14.3900 14.180];
%----------------------由于时间序列有不平稳趋势,进行两次差分运算,消除趋势性----------------------%
for i=2:96
Yt(i)=P(i)-P(i-1);
end
for i=3:96
L(i)=Yt(i)-Yt(i-1);
end
figure;
L=L(3:96);
Y=L(1:88);
plot(P);
title(‘原数据序列图‘);
hold on;
pause
plot(Y‘r‘);
title(‘两次差分后的序列图和原数对比图‘);
pause
%--------------------------------------对数据标准化处理----------------------------------------------%
Ux=sum(Y)/88 % 求序列均值
yt=Y-Ux;
b=0;
for i=1:88
b=yt(i)^2/88+b;
end
v=sqrt(b) % 求序列方差
Y=(Y-Ux)/v; % 标准化处理公式
f=F(1:88);
t=1:88;
figure;
plot(tftY‘r‘)
title(‘原始数据和标准化处理后对比图‘);
xlabel(‘时间t‘)ylabel(‘油价y‘);
legend(‘原始数据 F ‘‘标准化后数据Y ‘);
pause
%--------------------------------------对数据标准化处理----------------------------------------------%
%------------------------检验预处理后的数据是否符合AR建模要求,计算自相关和偏相关系数---------------%
%---------------
- 上一篇:有限元平面应力及桁架机构matlab代码
- 下一篇:ransac算法实验
相关资源
- 一类时间序列的多重分形分析
- matlab时间序列分析工具程序
- MATLAB_时间序列
- MATLAB在时间序列分析中的应用_张善文
- 时间序列教程
- MATLAB在时间序列分析中的应用-张善文
- 时间序列分析实验报告
- 基于Matlab的ARMA模型时间序列分析法仿
- ARMA模型的完整程序代码
- 基于MATLAB的时间序列分析建模、预测
- 时间序列实验报告
- matlab DFA降趋脉动分析算法实现
- IPG_Carmaker.mp4
- ARMA算法matlab程序
- 时间序列模型ARIMA的讲解与matlab代码实
- 混沌时间序列分析与预测工具箱 开源
- kernel adapting filter
- 时间序列的分析——模型的识别与预
- 时间序列分析与matlab实现
- ARMA模型matlab源程序
- ARMA模型自回归滑动平均模型
- matlab 时间序列分析源代码
- 奇异谱分析
- matlab时间序列工具箱
- 用Runge-Kutta方法求解Mackey-Glass时间序列
- ARMA功率谱估计
- 时间序列转换为邻接矩阵
- 基于小波神经网络的时间序列预测的
- ARMA模型预测
- karman谱拟合
评论
共有 条评论