资源简介
本程序是一个完整的ARMA模型的识别、参数估计以及预测的代码,编写语言简单易懂,适合初学者
代码片段和文件信息
clear;
%--------------------------------油价序列零均值化后的数据如下----------------------------------------%:
P=[ 19.5900 14.9100 15.7400 15.4000 13.0600 19.0700 15.2800 15.8200 12.7700 12.0500...
11.6900 13.8500 13.8500 10.0700 9.1700 10.7900 13.4400 21.1700 18.6400 13.2100...
15.5400 21.9400 23.1100 18.6400 14.9400 16.9000 15.4600 11.1500 13.1300 12.4800...
12.9500 12.5900 10.5800 10.5800 12.3900 15.5300 13.0600 10.2200 16.3300 19.7200...
21.3100 18.8400 24.8400 15.6700 15.5700 12.7300 13.5600 15.5400 17.2200 12.1400...
11.0700 12.0200 11.5500 6.9200 10.3300 8.3800 12.1100 11.4600 12.7500 13.3200...
13.0000 11.9000 11.7900 12.5500 11.8400 11.2500 11.1500 10.9900 11.7000 14.0100...
17.5100 17.2700 16.9000 15.7900 15.4500 6.2400 16.7100 16.7700 16.6400 17.8000...
16.8700 16.1300 15.7600 15.6600 15.5400 15.3000 15.0500 14.6900 14.3900 14.1800...
13.70 13.66 13.27 13.56 13.14 14.19 ];
F=[ 19.5900 14.9100 15.7400 15.4000 13.0600 19.0700 15.2800 15.8200 12.7700 12.0500...
11.6900 13.8500 13.8500 10.0700 9.1700 10.7900 13.4400 21.1700 18.6400 13.2100...
15.5400 21.9400 23.1100 18.6400 14.9400 16.9000 15.4600 11.1500 13.1300 12.4800...
12.9500 12.5900 10.5800 10.5800 12.3900 15.5300 13.0600 10.2200 16.3300 19.7200...
21.3100 18.8400 24.8400 15.6700 15.5700 12.7300 13.5600 15.5400 17.2200 12.1400...
11.0700 12.0200 11.5500 6.9200 10.3300 8.3800 12.1100 11.4600 12.7500 13.3200...
13.0000 11.9000 11.7900 12.5500 11.8400 11.2500 11.1500 10.9900 11.7000 14.0100...
17.5100 17.2700 16.9000 15.7900 15.4500 6.2400 16.7100 16.7700 16.6400 17.8000...
16.8700 16.1300 15.7600 15.6600 15.5400 15.3000 15.0500 14.6900 14.3900 14.180];
%----------------------由于时间序列有不平稳趋势,进行两次差分运算,消除趋势性----------------------%
for i=2:96
Yt(i)=P(i)-P(i-1);
end
for i=3:96
L(i)=Yt(i)-Yt(i-1);
end
figure;
L=L(3:96);
Y=L(1:88);
plot(P);
title(‘原数据序列图‘);
hold on;
plot(Y‘r‘);
title(‘两次差分后的序列图和原数对比图‘);
%--------------------------------------对数据标准化处理----------------------------------------------%
Ux=sum(Y)/88 % 求序列均值
yt=Y-Ux;
b=0;
for i=1:88
b=yt(i)^2/88+b;
end
v=sqrt(b) % 求序列方差
Y=(Y-Ux)/v; % 标准化处理公式
f=F(1:88);
t=1:88;
figure;
plot(tftY‘r‘)
title(‘原始数据和标准化处理后对比图‘);
xlabel(‘时间t‘)ylabel(‘油价y‘);
legend(‘原始数据 F ‘‘标准化后数据Y ‘);
%--------------------------------------对数据标准化处理----------------------------------------------%
%------------------------检验预处理后的数据是否符合AR建模要求,计算自相关和偏相关系数---------------%
%---------------------------------------计算自相关系数-----------------------------------%
R0=0;
for i=1:88
R0=Y(i)^2/88+R0;
end
R0
for k=1:20
R(k)=0;
for i=k+1:88
R(k)=Y(i)*Y(i-k)/88+R(k);
end
R %自协方差函数R
end
x=R/R0 %自相关系数x
figure;
plot(x)
title(‘自相关系数分析图‘);
%-----------------------------------计算自相关系数-------------------------------------%
%-----------------------解Y-W方程,其系数矩阵是Toeplit矩阵。求得偏相关函数X-----------------------%
X1=x(1);
X11=x(1)/1;
B=[x(1) x(2)]‘;
x2=[1 x(1)];
- 上一篇:ICA 独立成分分析法写得人脸识别程序
- 下一篇:宽带非相干信号DOA估计
相关资源
- SVM的回归预测分析——上证指数开盘
- 基于模型预测控制的车辆轨迹跟踪问
- 格型法线性预测分析预测系数和功率
- 科研常用代码预测分类评价
- 卡尔曼预测
- 无人驾驶车辆模型预测控制Matlab代码
- 分布式预测控制程序
- RBF神经网络建模与预测(1)
- 无人驾驶车辆模型预测直线轨迹跟踪
- 混凝土抗压强度预测_SVM_Matlab_归一_
- MATLAB之LSTM预测
- 基于SVM的回归预测分析
- 灰色预测模型及Matlab实现附参考论文
- 长江水质预测2005年数学建模+神经网络
- 基于遗传算法的小波神经网络在股票
- matlab预测控制工具箱使用手册
- Matlab帧内/帧间预测
- svm 支持向量机 回归 预测
- 房价预测模型算法源代码
- 时间序列教程
- 广义自回归神经网络预测代码含原始
- 支持向量机matlab工具箱含资料及gui模
- 课件《神经.模糊.预测控制及其MATLA
- 基于BP神经网络的水上交通事故预测及
- MMC-HVDC模型预测控制
- 模型预测控制算法及仿真
- MATLAB&Excel定量预测与决策
- 人口预测模型
- 线性定常系统和线性时变系统的模型
- 模型预测控制系统的Matlab设计和实施
评论
共有 条评论