-
大小: 167KB文件类型: .rar金币: 1下载: 0 次发布日期: 2021-06-11
- 语言: Matlab
- 标签: LPP,MATLAB
资源简介
LPP是流形学习的一种算法,该资源为LPP局部保持投影的MATLAB源代码。
代码片段和文件信息
function [eigvector eigvalue elapse] = LGE(W D options data)
% LGE: Linear Graph embedding
%
% [eigvector eigvalue] = LGE(W D options data)
%
% Input:
% data - data matrix. Each row vector of data is a
% sample vector.
% W - Affinity graph matrix.
% D - Constraint graph matrix.
% LGE solves the optimization problem of
% a* = argmax (a‘data‘WXa)/(a‘data‘DXa)
% Default: D = I
%
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% ReducedDim - The dimensionality of the reduced
% subspace. If 0 all the dimensions
% will be kept. Default is 30.
%
% Regu - 1: regularized solution
% a* = argmax (a‘X‘WXa)/(a‘X‘DXa+ReguAlpha*I)
% 0: solve the sinularity problem by SVD (PCA)
% Default: 0
%
% ReguAlpha - The regularization parameter. Valid
% when Regu==1. Default value is 0.1.
%
% ReguType - ‘Ridge‘: Tikhonov regularization
% ‘Custom‘: User provided
% regularization matrix
% Default: ‘Ridge‘
% regularizerR - (nFea x nFea) regularization
% matrix which should be provided
% if ReguType is ‘Custom‘. nFea is
% the feature number of data
% matrix
%
% PCARatio - The percentage of principal
% component kept in the PCA
% step. The percentage is
% calculated based on the
% eigenvalue. Default is 1
% (100% all the non-zero
% eigenvalues will be kept.
% If PCARatio > 1 the PCA step
% will keep exactly PCARatio principle
% components (does not exceed the
% exact number of non-zero components).
%
%
% Output:
% eigvector - Each column is an embedding function for a new
% sample vector (row vector) x y = x*eigvector
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 200194 2009-12-02 10:20 Locality Preserving Projections.pdf
文件 10940 2009-12-02 10:43 LGE.m
文件 5044 2009-12-02 10:43 LPP.m
----------- --------- ---------- ----- ----
216178 3
- 上一篇:10mm棋盘格
- 下一篇:Capon算法计算DOA
评论
共有 条评论