资源简介
多线性回归的MatLab例子(带有数据与代码,可运行显示图形)
代码片段和文件信息
% Exercise 3 -- Multivariate Linear Regression
clear all; close all; clc
x = load(‘ex3x.dat‘);
y = load(‘ex3y.dat‘);
m = length(y);
% Add intercept term to x
x = [ones(m 1) x];
% Save a copy of the unscaled features for later
x_unscaled = x;
% Scale features and set them to zero mean
mu = mean(x);
sigma = std(x);
x(:2) = (x(:2) - mu(2))./ sigma(2);
x(:3) = (x(:3) - mu(3))./ sigma(3);
% Prepare for plotting
figure;
% plot each alpha‘s data points in a different style
% braces indicate a cell not just a regular array.
plotstyle = {‘b‘ ‘r‘ ‘g‘ ‘k‘ ‘b--‘ ‘r--‘};
% Gradient Descent
alpha = [0.01 0.03 0.1 0.3 1 1.3];
MAX_ITR = 100;
% this will contain my final values of theta
% after I‘ve found the best learning rate
theta_grad_descent = zeros(size(x(1:)));
for i = 1:length(alpha)
theta = zeros(size(x(1:)))‘; % initialize fitting parameters
J = zeros(MAX_ITR 1);
for num_iterations = 1:MAX_ITR
% Calculate the J term
J(num_iterations) = (0.5/m) .* (x * theta - y)‘ * (x * theta - y);
% The gradient
grad = (1/m) .* x‘ * ((x * theta) - y);
% Here is the actual update
theta = theta - alpha(i) .* grad;
end
% Now plot the first 50 J terms
plot(0:49 J(1:50) char(plotstyle(i)) ‘LineWidth‘ 2)
hold on
% After some trial and error I find alpha=1
% is the best learning rate and converges
% before the 100th iteration
%
% so I save the theta for alpha=1 as the result of
% gradient descent
if (alpha(i) == 1)
theta_grad_descent = theta;
end
end
legend(‘0.01‘‘0.03‘‘0.1‘ ‘0.3‘ ‘1‘ ‘1.3‘)
xlabel(‘Number of iterations‘)
ylabel(‘Cost J‘)
% force Matlab to display more than 4 decimal places
% formatting persists for rest of this session
format long
% Display gradient descent‘s result
theta_grad_descent
% Estimate the price of a 1650 sq-ft 3 br house
price_grad_desc = dot(theta_grad_descent [1 (1650 - mu(2))/sigma(2)...
(3 - mu(3))/sigma(3)])
% Calculate the parameters from the normal equation
theta_normal = (x_unscaled‘ * x_unscaled)\x_unscaled‘ * y
%Estimate the house price again
price_normal = dot(theta_normal [1 1650 3])
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2248 2018-03-26 13:51 NG-Exercise3 Multivariate Linear Regression\ex3.m
文件 1551 2010-10-14 23:26 NG-Exercise3 Multivariate Linear Regression\ex3x.dat
文件 799 2010-10-14 23:26 NG-Exercise3 Multivariate Linear Regression\ex3y.dat
相关资源
- Pattern Recognition and Machine Learning(高清
- MATLAB 编程 第二版 Stephen J. Chapman 著
- 均值滤波和FFT频谱分析Matlab代码
- 《MATLAB扩展编程》代码
- HDB3码、AMI码的MATLAB实现
- 3点GPS定位MATLAB仿真
- MATLAB数字信号处理85个实用案例精讲入
- matlab从入门到精通pdf94795
- 欧拉放大论文及matlab代码
- 跳一跳辅助_matlab版本
- 全面详解LTE MATLAB建模、仿真与实现
- MIMO-OFDM无线通信技术及MATLAB实现_孙锴
- MATLAB Programming for Engineers 4th - Chapman
- matlab 各种谱分析对比
- 分数阶chen混沌matlab程序
- 基于粒子群算法的非合作博弈的matl
- MATLAB车流仿真 包括跟驰、延误
- matlab空间桁架计算程序
- 基于MATLAB的图像特征点匹配和筛选
- DMA-TVP-FAVAR
- GPS信号的码捕获matlab代码.7z
- 一维光子晶体MATLAB仿真代码吸收率折
- newmark法源程序
- 传统关联成像、计算鬼成像matlab
- pri传统分选算法
- 摆动滚子推杆盘形凸轮设计
- 医学图像重建作业matlab源码
- Matlab实现混沌系统的控制
- 检测疲劳驾驶
- Matlab锁相环仿真-Phase Locked Loop.rar
评论
共有 条评论