资源简介
matlab的t-sne算法,完美实现t-sne算法,已经过检验可以使用,可放心下载运行。
代码片段和文件信息
function hout = addedvarplot(xyvnuminstatsfdoconstvarargin)
%ADDEDVARPLOT Create added-variable plot for stepwise regression
% ADDEDVARPLOT(XYVNUMINMODEL) produces an added-variable plot for the
% response Y and the predictor in column VNUM of X. This plot illustrates
% the incremental effect of this predictor in a regression model in which
% the columns listed in INMODEL are used as predictors. X is an N-by-P
% matrix of predictor values. Y is vector of N response values. VNUM is a
% scalar index specifying the column of X to use in the plot. INMODEL is
% either a vector of column numbers or a logical vector of P elements
% specifying the columns of X to use in the base model. By default all
% elements of INMODEL are false (the model has no predictors). ADDEDVARPLOT
% automatically includes a constant term in the model.
%
% ADDEDVARPLOT(XYVNUMINMODELSTATS) uses the structure STATS containing
% fitted model results created by the STEPWISEFIT function. If STATS is
% omitted this function computes it.
%
% An added-variable plot contains data and fitted lines. Suppose X1 is
% column VNUM of X. The data curve plots Y versus X1 after removing the
% effects of the other predictors specified by INMODEL. The solid line is
% a least squares fit to the data curve and its slope is the coefficient
% that X1 would have if it were included in the model. The dotted lines
% are 95% confidence bounds for the fitted line and they can be used to
% judge the significance of X1.
%
% If VNUM also appears in INMODEL the plot that ADDEDVARPLOT produces is
% sometimes known as a partial regression leverage plot.
%
% Example: Perform a stepwise regression on the Hald data and create
% an added-variable plot for the predictor in column 2.
% load hald
% [bsepinstats] = stepwisefit(ingredientsheat);
% addedvarplot(ingredientsheat2instats)
% LinearModel.plotAdded may call this function with a vector of VNUM
% values. It will never call with an “out“ term. It supplies the value
% DOCONST=true because it supplies a constant term in X.
% Copyright 1993-2012 The MathWorks Inc.
if nargin > 7
[varargin{:}] = convertStringsToChars(varargin{:});
end
narginchk(3Inf);
P = size(x 2);
% Check for valid inputs
if ~isvector(y)
error(message(‘stats:addedvarplot:VectorRequired‘));
end
if (nargin < 4)
in = false(1P);
elseif islogical(in)
if length(in)~=P
error(message(‘stats:addedvarplot:InModelBadSize‘));
end
else
if any(~ismember(in1:P))
error(message(‘stats:addedvarplot:InModelBadValue‘));
end
in = ismember((1:P)in);
end
if isempty(vnum) || ~isvector(vnum)
error(message(‘stats:addedvarplot:EmptyVarSelection‘));
elseif ~(all(in(vnum)) || ~any(in(vnum)))
error(message(‘stats:addedvarplot:BadVarSelection‘));
end
if nargin<7
doconst = true;
end
% Perform fit if fit results are not done; otherwise retrieve
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2019-01-19 19:41 程序工具箱\stats\
目录 0 2019-01-19 19:41 程序工具箱\原函数\
目录 0 2019-01-19 19:41 程序工具箱\stats\+internal\
目录 0 2019-01-19 19:41 程序工具箱\stats\+prob\
目录 0 2019-01-19 19:41 程序工具箱\stats\+stats\
目录 0 2019-01-19 19:41 程序工具箱\stats\@classregtree\
目录 0 2019-01-19 19:41 程序工具箱\stats\@CompactTreeBagger\
目录 0 2019-01-19 19:41 程序工具箱\stats\@ExhaustiveSearcher\
目录 0 2019-01-19 19:41 程序工具箱\stats\@gmdistribution\
目录 0 2019-01-19 19:41 程序工具箱\stats\@haltonset\
目录 0 2019-01-19 19:41 程序工具箱\stats\@KDTreeSearcher\
目录 0 2019-01-19 19:41 程序工具箱\stats\@NeighborSearcher\
目录 0 2019-01-19 19:41 程序工具箱\stats\@paretotails\
目录 0 2019-01-19 19:41 程序工具箱\stats\@piecewisedistribution\
目录 0 2019-01-19 19:41 程序工具箱\stats\@qrandset\
目录 0 2019-01-19 19:41 程序工具箱\stats\@qrandstate\
目录 0 2019-01-19 19:41 程序工具箱\stats\@qrandstream\
目录 0 2019-01-19 19:41 程序工具箱\stats\@sobolset\
目录 0 2019-01-19 19:41 程序工具箱\stats\@sobolstate\
目录 0 2019-01-19 19:41 程序工具箱\stats\@stats\
目录 0 2019-01-19 19:41 程序工具箱\stats\@TreeBagger\
目录 0 2019-01-19 19:41 程序工具箱\stats\private\
目录 0 2019-01-19 19:41 程序工具箱\stats\+internal\+stats\
目录 0 2019-01-19 19:41 程序工具箱\stats\+internal\+stats\+parallel\
目录 0 2019-01-19 19:41 程序工具箱\stats\+internal\+stats\@PEG\
目录 0 2019-01-19 19:41 程序工具箱\stats\+internal\+stats\@PEG\private\
目录 0 2019-01-19 19:41 程序工具箱\stats\+stats\+coder\
目录 0 2019-01-19 19:41 程序工具箱\stats\+stats\+mcmc\
目录 0 2019-01-19 19:41 程序工具箱\stats\+stats\+coder\+distutils\
目录 0 2019-01-19 19:41 程序工具箱\stats\+stats\+coder\+searcher\
目录 0 2019-01-19 19:41 程序工具箱\stats\+stats\+mcmc\+impl\
............此处省略865个文件信息
相关资源
- 数字图像处理matlab版配套资料(图片
- 现代控制理论及其MATLAB实践
- 数字图像处理之几何变换2将图片贴在
- matlab开发-移动对象跟踪基到背景减法
- matlab开发-用PCA检测平面图像的眼镜
- 《MATLAB图像与视频处理实用案例详解
- MATLAB教程 全面PPT
- 相机超分辨+焦外虚化渲染Matlab程序
- Excel(matlab)组态王DDE(opc)数据连接
- 基于Matlab的EEGLab工具包使用手册
- 与电力电子有关的matlab仿真,从基础
- FERET人脸数据集matlab
- Multiphysics Modeling Using COMSOL5 and MATLAB书
- Matlab Deep learning 2017年新书
- 小波分析理论与Matlab7实现书及代码
- 《MATLAB数据分析方法》 李柏年等著
- 偏微分方程的MATLAB解法 陆君安编著
- 基于滑模速度控制器的PMSM矢量控制系
- 精通Matlab数字图像处理与识别.zip
- matlab神经网络30个案例书籍和源码
- KMeans+BOF实现图像检索Matlab
- 宽度学习 Broad Learning System MATLAB 代码
- 电力电子应用技术的MATLAB仿真 林飞杜
- 阵列信号处理张小飞pdf+matlab程序
- Digital Signal Processing Using MATLAB 3rd Edi
- 统计学习方法笔记部分算法含matlab代
- 基于MPU9250获取姿态航向角stm32及matl
- 数字信号处理教程 MATLAB释义与实现
- 自用程序:各种光谱数据预处理代码
- psat-2.1.11-mat.zip最新版本
评论
共有 条评论