资源简介
读取三维点云并进行三角化。可输出三角面片对应点。亲测可用。
代码片段和文件信息
%% MyCrust
%
%Simple surface recostruction program based on Crust algorithm
%Given a set of 3D points returns a triangulated tight surface.
%
%The more points there are the best the surface will be fitted
%although you will have to wait more. For very large models an
%help memory errors may occurs.
%It is important even the point distribution generally uniformly
% distributed points with denser zones in high curvature features
% give the best results.
%
% Remember crust algorithom needs a cloud representing a volume
% so open surface may give inaccurate results.
%
%
% If any problems occurs in execution or if you found a bug
% have a suggestion or question just contact me at:
%
% giaccariluigi@msn.com
%
%
%
%
%Here is a simple example:
%
%load Dino.mat%load input points from mat file
%
%[t]=MyCrust(p);
%
% figure(1)
% hold on
% title(‘Output Triangulation‘‘fontsize‘14)
% axis equal
% trisurf(tp(:1)p(:2)p(:3)‘facecolor‘‘c‘‘edgecolor‘‘b‘)
%
%Input:
% p is a Nx3 array containing the 3D set of points
%Output:
% t are points id contained in triangles Nx3 array too.
%
% See also qhull voronoin convhulln delaunay delaunay3 tetramesh.
%
%Author:Giaccari Luigi
%Last Update: 1/12/2008
%Creation: 10/10/2008
function [t]=MyCrust(p)
%% Main
starttime=clock;
%add points to the given ones this is usefull
%to create outside tetraedrom
tic
p=AddShield(p);
fprintf(‘Addedded Shield: %4.4f s\n‘toc)
tic
tetr=delaunayn(p);%creating tedraedron
tetr=int32(tetr);%use integer to save memory
fprintf(‘Delaunay Triangulation Time: %4.4f s\n‘toc)
%connectivity data
%find triangles to tetraedrom and tetraedrom to triangles connectivity data
tic
[t2tetrtetr2t]=Connectivity(tetr);
fprintf(‘Connectivity Time: %4.4f s\n‘toc)
tic
[ccr]=CC();%Circumcenters of tetraedroms
fprintf(‘Circumcenters Time: %4.4f s\n‘toc)
clear n
tic
t=Walking();%Flagging tetraedroms as inside or outside
fprintf(‘Walking Time: %4.4f s\n‘toc)
time=etime(clockstarttime);
fprintf(‘Total Time: %4.4f s\n‘time)
%% Circumcenters(Nested)
function [ccr]=CC()
%finds circumcenters fro a set of tetraedrom
%points of tetraedrom
p1=(p(tetr(:1):));
p2=(p(tetr(:2):));
p3=(p(tetr(:3):));
p4=(p(tetr(:4):));
%vectors of tetraedrom edges
v21=p(tetr(:1):)-p(tetr(:2):);
v31=p(tetr(:3):)-p(tetr(:1):);
v41=p(tetr(:4):)-p(tetr(:1):);
%preallocation
cc=zeros(size(tetr1)3);
%Solve the system using cramer method
d1=sum(v41.*(p1+p4)*.52);
d2=sum(v21.*(p1+p2)*.52);
d3=sum(v31.*(p1+p3)*.52);
det23=(v21(:2).*v31(:3))-(v21(:3).*v31(:2));
det13=(v21(:3).*v31(:1))-(v21(:1).*v31(:3));
det12=(v2
- 上一篇:田纳西-伊斯曼matlab数据,完全免费
- 下一篇:卷积神经网络识别手写数字图像
评论
共有 条评论