资源简介
很好的课程资源,值得初学者学习使用,值得下载的好资源
代码片段和文件信息
function [chainstate]=markov(Tns0V);
%function [chainstate]=markov(Tns0V);
% chain generates a simulation from a Markov chain of dimension
% the size of T
%
% T is transition matrix
% n is number of periods to simulate
% s0 is initial state (initial probabilities)
% V is the quantity corresponding to each state
% state is a matrix recording the number of the realized state at time t
%
% Original author: Tom Sargent
% Comments added by Qiang Chen
[r c]=size(T); % r is # of rows c is # of columns of T
if nargin == 1; % “nargin“ refers to “number of arguments in“. So only T is provided in this case
V=[1:r];
s0=1;
n=100;
end;
if nargin == 2; % both T and n are provided
V=[1:r];
s0=1;
end;
if nargin == 3; % T n and S0 are provided
V=[1:r];
end;
% check if the transition matrix T is square
if r ~= c;
disp(‘error using markov function‘);
disp(‘transition matrix must be square‘);
return; % break the program and return
end;
% check if each row of T sums up to 1
for k=1:r;
if sum(T(k:)) ~= 1;
disp(‘error using markov function‘)
disp([‘row ‘num2str(k)‘ does not sum to one‘]); % “num2str“ converts numbers to a string.
disp(‘ it sums to :‘);
disp([ sum(T(k:)) ]);
disp([‘normalizing row ‘num2str(k)‘‘]);
T(k:)=T(k:)/sum(T(k:));
end;
end;
[v1 v2]=size(V);
if v1 ~= 1 | v2 ~=r % “|“ means “or“
disp(‘error using markov function‘);
disp([‘state value vector V must be 1 x ‘num2str(r)‘‘])
if v2 == 1 &v2 == r;
disp(‘transposing state valuation vector‘);
V=V‘; % change it to a column vector
else;
return;
end;
end
if s0 < 1 |s0 > r;
disp([‘initial state ‘num2str(s0)‘ is out of range‘]);
disp([‘initial state defaulting to 1‘]);
s0=1;
end;
% The simulation of Markov chain formally starts from here
%T
%rand(‘uniform‘);
X=rand(n-11); % generate (n-1) random numbers drawn from uniform distribution on [01] each number to be used in one simulation.
s=zeros(r1); % initiate the state vector “s“ to be a rx1 zero vector
s(s0)=1; % change the “s0“th element of “s“ to 1
cum=T*triu(ones(size(T)));
% “triu(ones(size(T)))“ generates an upper triangular matrix with all elements equal to 1
% cum is a rxr matrix whose ith column is the cumulative sum from the 1st column to the ith column
% the ith row of cum is the cumulative distribution for the next period given the current state.
for k=1:length(X); % “length(X)“ returns the size of the longest dimension of X. “k“ indicates the kth simulation.
state(:k)=s; % state is a matrix recording the number of the realized state at time k
ppi=[0 s‘*cum]; % this is the conditional cumulative distribution for the next period given the current state s
s=((X(k)<=ppi(2:r+1)).*(X(k)>ppi(1:r)))‘;
% compares each element of ppi(2:r+1) or ppi(1:r) with a scalar X(k) and
% returns 1 if the inequality holds and 0 otherwise
% this formula assigns 1 when both inequalities hold a
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 684032 2009-11-27 10:55 马尔科夫链\Markov.ppt
文件 3040 2018-04-26 09:38 马尔科夫链\markov.m
文件 2048000 2009-11-27 10:58 马尔科夫链\马尔可夫链预测.ppt
目录 0 2018-05-08 10:04 马尔科夫链\
- 上一篇:阳光超市管理系统
- 下一篇:链路调度matlab程序适合初学者
评论
共有 条评论