资源简介
传统的超分辨重建算法往往采用梯度下降法进行求解,迭代时步长往往通过经验确定。而且不同的图像的最优步长往往不相同。步长过大会导致发散,步长过小会导致收敛缓慢。本算法基于对正则化超分辨重建算法实现的基础上,对步长的选取进行了优化,推导出了每次迭代时的最优步长大小,并将其自适应化,改进了超分辨算法的收敛性,从而能够在更短的时间内取得更加精确的重建结果。相关具体内容请参考对应的论文:Yingqian Wang, Jungang Yang, Chao Xiao, and Wei An, "Fast convergence strategy for multi-image superresolution via adaptive line search," IEEE Access, vol. 6, no. 1, pp. 9129-9139.

代码片段和文件信息
function ssim = cal_ssim( im1 im2 b_row b_col)
[h w ch] = size( im1 );
ssim = 0;
if (ch == 1)
ssim = ssim_index ( im1(b_row+1:h-b_row b_col+1:w-b_col) im2(b_row+1:h-b_rowb_col+1:w-b_col));
else
for i = 1:ch
ssim = ssim + ssim_index ( im1(b_row+1:h-b_row b_col+1:w-b_col i) im2(b_row+1:h-b_rowb_col+1:w-b_col i));
end
ssim = ssim/3;
end
return
function [mssim ssim_map] = ssim_index(img1 img2 K window L)
% ========================================================================
% SSIM Index with automatic downsampling Version 1.0
% Copyright(c) 2009 Zhou Wang
% All Rights Reserved.
%
% ----------------------------------------------------------------------
% Permission to use copy or modify this software and its documentation
% for educational and research purposes only and without fee is hereby
% granted provided that this copyright notice and the original authors‘
% names appear on all copies and supporting documentation. This program
% shall not be used rewritten or adapted as the basis of a commercial
% software or hardware product without first obtaining permission of the
% authors. The authors make no representations about the suitability of
% this software for any purpose. It is provided “as is“ without express
% or implied warranty.
%----------------------------------------------------------------------
%
% This is an implementation of the algorithm for calculating the
% Structural SIMilarity (SSIM) index between two images
%
% Please refer to the following paper and the website with suggested usage
%
% Z. Wang A. C. Bovik H. R. Sheikh and E. P. Simoncelli “Image
% quality assessment: From error visibility to structural similarity“
% IEEE Transactios on Image Processing vol. 13 no. 4 pp. 600-612
% Apr. 2004.
%
% http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
%
% Note: This program is different from ssim_index.m where no automatic
% downsampling is performed. (downsampling was done in the above paper
% and was described as suggested usage in the above website.)
%
% Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
% (2) img2: the second image being compared
% (3) K: constants in the SSIM index formula (see the above
% reference). defualt value: K = [0.01 0.03]
% (4) window: local window for statistics (see the above
% reference). default widnow is Gaussian given by
% window = fspecial(‘gaussian‘ 11 1.5);
% (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
% If one of the images being compared is regarded as
% perfect quality then mssim can be considered as the
% quality measure of the other image.
% I
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 6779 2017-10-07 11:07 Wang2018Fast\cal_ssim.m
文件 3554 2018-05-23 21:20 Wang2018Fast\Demo_run.m
文件 349 2018-05-23 21:18 Wang2018Fast\Gradient_BTV.m
文件 288 2018-05-23 21:19 Wang2018Fast\HR2LR.m
文件 478 2018-05-23 21:16 Wang2018Fast\ImDegrate.m
文件 437 2018-05-23 21:17 Wang2018Fast\ImWarp.m
文件 536 2018-05-23 21:18 Wang2018Fast\L2GradientBackProject.m
文件 724 2018-05-23 21:18 Wang2018Fast\line_search.m
文件 341 2018-05-23 21:19 Wang2018Fast\LR2HR.m
文件 2263 2018-05-23 21:13 Wang2018Fast\readme.txt
文件 1244214 2013-10-06 16:07 Wang2018Fast\Set\01.bmp
文件 786486 2013-10-06 16:07 Wang2018Fast\Set\02.bmp
文件 786486 2013-10-06 16:07 Wang2018Fast\Set\03.bmp
文件 786486 2013-10-06 16:07 Wang2018Fast\Set\04.bmp
文件 720054 2013-10-06 16:07 Wang2018Fast\Set\05.bmp
文件 679830 2017-10-21 07:57 Wang2018Fast\Set\06.bmp
文件 540054 2017-10-21 07:58 Wang2018Fast\Set\07.bmp
文件 267894 2017-10-21 19:02 Wang2018Fast\Set\08.bmp
文件 248886 2013-10-06 16:07 Wang2018Fast\Set\09.bmp
文件 235350 2013-10-06 16:07 Wang2018Fast\Set\10.bmp
文件 235254 2013-10-06 16:07 Wang2018Fast\Set\11.bmp
文件 196730 2013-10-06 16:07 Wang2018Fast\Set\12.bmp
文件 1179702 2013-10-06 16:07 Wang2018Fast\Set\13.bmp
文件 1039158 2017-11-02 16:55 Wang2018Fast\Set\14.bmp
文件 304182 2013-10-06 16:07 Wang2018Fast\Set\15.bmp
文件 263222 2013-10-06 16:07 Wang2018Fast\Set\16.bmp
文件 304182 2013-10-06 16:07 Wang2018Fast\Set\17.bmp
文件 786486 2013-10-06 16:07 Wang2018Fast\Set\18.bmp
文件 2493 2017-04-15 11:13 Wang2018Fast\shift.m
文件 165 2018-05-23 21:18 Wang2018Fast\Tikhonov.m
............此处省略7个文件信息
- 上一篇:matlab Allan方差分析文件
- 下一篇:基于FPGA的自适应滤波器的实现
相关资源
- 基于matlab的图像处理源程序
- 冈萨雷斯数字图像处理matlab版(第三
- 基于matlab 的图像处理100实例
- 8领域边界跟踪 图像处理 matlab
- matlab-图像处理算法
- p文件,MATLAB的
- 数字图像处理radon matlab变换算法代码
- 图像降噪Matlab代码
- 传统关联成像、计算鬼成像matlab
- MATLAB7.x图像处理
- 基于matlab的车牌识别系统论文
- matlab2019运动目标检测--数字图像处理
- 计算图像Spatial Frequence的Matlab程序SF
- 尾灯识别matlab代码
- MATLAB大脑腔体图像分割
- 基于MATLAB人民币识别系统.zip
- 数字图像处理作业canny边缘检测坎尼边
- 数字图像处理 MATLAB 大作业 代码及其
- 遥感影像融合_数字图像处理的matlab程
- MATLAB图像与视频处理实用案例详解代
- MATLAB 图像处理识别程序
- 数字图像处理使用matlab进行采样量化
- 傅里叶变化频谱图及频域滤波
- MATLAB实现k-svd和mod信号处理
- 图像处理---matlab
- Matlab在图像处理与目标识别方面的应
- matlab数字图像处理之几何变换将图像
- matlab数字图像处理之图像几何变换
- mri去偏场代码
- 超分辨率图像重建
评论
共有 条评论