资源简介
此ransac为图像匹配的一个重要环节,可实现更复杂的图像匹配
代码片段和文件信息
% RANSAC - Robustly fits a model to data with the RANSAC algorithm
%
% Usage:
%
% [M inliers] = ransac(x fittingfn distfn degenfn s t maxDataTrials maxTrials)
%
% Arguments:
% x - Data sets to which we are seeking to fit a model M
% It is assumed that x is of size [d x Npts]
% where d is the dimensionality of the data and Npts is
% the number of data points.
%
% fittingfn - Handle to a function that fits a model to s
% data from x. It is assumed that the function is of the
% form:
% M = fittingfn(x)
% Note it is possible that the fitting function can return
% multiple models (for example up to 3 fundamental matrices
% can be fitted to 7 matched points). In this case it is
% assumed that the fitting function returns a cell array of
% models.
% If this function cannot fit a model it should return M as
% an empty matrix.
%
% distfn - Handle to a function that evaluates估计 the
% distances距离 from the model to data x.
% It is assumed that the function is of the form:
% [inliers M] = distfn(M x t)
% This function must evaluate the distances between points
% and the model returning the indices of elements in x that
% are inliers内点 that is the points that are within distance
% ‘t‘ of the model. Additionally if M is a cell array of
% possible models ‘distfn‘ will return the model that has the
% most inliers. If there is only one model this function
% must still copy the model to the output. After this call M
% will be a non-cell object representing only one model.
%
% degenfn - Handle to a function that determines whether a
% set of datapoints will produce a degenerate model.
% This is used to discard丢弃 random samples that do not
% result in useful models.
% It is assumed that degenfn is a boolean function of
% the form:
% r = degenfn(x)
% It may be that you cannot devise想到 a test for degeneracy in
% which case you should write a dummy假的 function that always
% returns a value of 1 (true) and rely on ‘fittingfn‘ to return
% an empty model should the data set be degenerate.
%
% s - The minimum number of samples采样最小值 from x required by
% fittingfn to fit a model.
%
% t - The distance threshold距离阈值 between a data point and the model
% used to decide whether the point is an inlier or not.
%
% maxDataTrials - Maximum number of attempts尝试最大值 to select a non-dege
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 9674 2011-08-21 22:52 matlab ransac\ransac.m
目录 0 2013-05-07 15:31 matlab ransac
----------- --------- ---------- ----- ----
9674 2
- 上一篇:将2D图像转换为红蓝3D效果
- 下一篇:多尺度LBP
相关资源
- 基于Matlab的最大熵模糊图像复原算法
- KITTI雷达点云与图像数据融合matlab源码
- matlab 解码 NMEA0183格式GGA数据
- 一个有关飞机的模板匹配的跟踪的m
- 基于MATLAB的电弧模型仿真
- PRI信号分选
- Matlab论文:基于Matlab的二进制数字调
- 802.11协议吞吐量随节点数性能仿真
- matlab图片rgb转yuv,存.yuv文件 播放器
- Duda模式分类Pattern Classification MATLAB 代
- dijkstra算法的matlab实现31274
- 随机路径生成函数matlab
- matlab语音信号处理工具箱
- matlab2013激活文件
- matlab实现游程编码
- 暗通道先验+引导滤波MATLAB代码
- 边缘检测中的canny算法及其matlab实现
- 通过达曼光栅生成点阵的matlab程序.
- MATLAB核函数算法
- 求控制系统的性能指标MptrtsFAI,matl
- matlab 求DTFT
- 逆变器重复控制算法MATLAB仿真
- MATLAB R2014b 许可协议文件
- matlab读取comtrade格式的程序
- 基于Matlab的RC一阶电路仿真
- Las点云数据读取代码
- 雷达回波加天线方向图模拟程序
- MATLAB 2017b 安装文件及其破解文件百度
- Matlab实现音频降噪
- matlab实现导航卫星系统中计算多普勒
评论
共有 条评论