资源简介
tensorflow官方文档之卷积神经网络的cifar10所有代码——包含了cifar10_multi_gpu_train.py,以及使用说明
代码片段和文件信息
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License Version 2.0 (the “License“);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing software
# distributed under the License is distributed on an “AS IS“ BASIS
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
“““Builds the CIFAR-10 network.
Summary of available functions:
# Compute input images and labels for training. If you would like to run
# evaluations use input() instead.
inputs labels = distorted_inputs()
# Compute inference on the model inputs to make a prediction.
predictions = inference(inputs)
# Compute the total loss of the prediction with respect to the labels.
loss = loss(predictions labels)
# Create a graph to run one step of training with respect to the loss.
train_op = train(loss global_step)
“““
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import re
import sys
import tarfile
import tensorflow.python.platform
from six.moves import urllib
import tensorflow as tf
#from tensorflow.models.image.cifar10 import cifar10_input
import cifar10_input
FLAGS = tf.app.flags.FLAGS
# Basic model parameters.
tf.app.flags.DEFINE_integer(‘batch_size‘ 128
“““Number of images to process in a batch.“““)
tf.app.flags.DEFINE_string(‘data_dir‘ ‘cifar10_data/‘
“““Path to the CIFAR-10 data directory.“““)
# Global constants describing the CIFAR-10 data set.
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.1 # Initial learning rate.
# If a model is trained with multiple GPU‘s prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = ‘tower‘
DATA_URL = ‘http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz‘
def _activation_summary(x):
“““Helper to create summaries for activations.
Creates a summary that provides a histogram of activations.
Creates a summary that measure the sparsity of activ
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-06-12 10:47 tensorflow.cifar10-master\
文件 1654 2017-06-12 10:47 tensorflow.cifar10-master\BUILD
文件 2992 2017-06-12 10:47 tensorflow.cifar10-master\README.md
文件 1 2017-06-12 10:47 tensorflow.cifar10-master\__init__.py
文件 14151 2017-06-12 10:47 tensorflow.cifar10-master\cifar10.py
文件 5675 2017-06-12 10:47 tensorflow.cifar10-master\cifar10_eval.py
文件 9289 2017-06-12 10:47 tensorflow.cifar10-master\cifar10_input.py
文件 2412 2017-06-12 10:47 tensorflow.cifar10-master\cifar10_input_test.py
文件 10906 2017-06-12 10:47 tensorflow.cifar10-master\cifar10_multi_gpu_train.py
文件 4706 2017-06-12 10:47 tensorflow.cifar10-master\cifar10_train.py
文件 2729 2017-06-12 10:47 tensorflow.cifar10-master\compat.py
评论
共有 条评论