资源简介
混合高斯模型的背景减除法和相邻帧差法相结合进行目标检测的程序,内附视频
(The background of the gaussian mixture model reduction division and adjacent frame differential method for target detection with the program, enclosing video)

代码片段和文件信息
% This m-file implements the mixture of Gaussians algorithm for background
% subtraction. It may be used free of charge for any purpose (commercial
% or otherwise) as long as the author (Seth Benton) is acknowledged.
clear all
% source = aviread(‘C:\Video\Source\traffic\san_fran_traffic_30sec_QVGA‘);
source = aviread(‘SampleVideo.avi‘);
% ----------------------- frame size variables -----------------------
fr = source(1).cdata; % read in 1st frame as background frame
fr_bw = rgb2gray(fr); % convert background to greyscale
fr_size = size(fr);
width = fr_size(2);
height = fr_size(1);
fg = zeros(height width);
bg_bw = zeros(height width);
% --------------------- mog variables -----------------------------------
C = 3; % number of gaussian components (typically 3-5)
M = 3; % number of background components
D = 2.5; % positive deviation threshold
alpha = 0.01; % learning rate (between 0 and 1) (from paper 0.01)
thresh = 0.25; % foreground threshold (0.25 or 0.75 in paper)
sd_init = 6; % initial standard deviation (for new components) var = 36 in paper
w = zeros(heightwidthC); % initialize weights array
mean = zeros(heightwidthC); % pixel means
sd = zeros(heightwidthC); % pixel standard deviations
u_diff = zeros(heightwidthC); % difference of each pixel from mean
p = alpha/(1/C); % initial p variable (used to update mean and sd)
rank = zeros(1C); % rank of components (w/sd)
% --------------------- initialize component means and weights -----------
pixel_depth = 8; % 8-bit resolution
pixel_range = 2^pixel_depth -1; % pixel range (# of possible values)
for i=1:height
for j=1:width
for k=1:C
mean(ijk) = rand*pixel_range; % means random (0-255)
w(ijk) = 1/C; % weights uniformly dist
sd(ijk) = sd_init; % initialize to sd_init
end
end
end
%--------------------- process frames -----------------------------------
for n = 1:length(source)
fr = source(n).cdata; % read in frame
fr_bw = rgb2gray(fr); % convert frame to grayscale
% calculate difference of pixel values from mean
for m=1:C
u_diff(::m) = abs(double(fr_bw) - double(mean(::m)));
end
% update gaussian components for each pixel
for i=1:height
for j=1:width
match = 0;
for k=1:C
if (abs(u_diff(ijk)) <= D*sd(ijk)) % pixel matches component
match = 1;
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 6138 2011-04-18 15:56 mixture_of_gaussians.m
文件 638976 2005-03-14 13:59 SampleVideo.avi
----------- --------- ---------- ----- ----
645114 2
- 上一篇:Xposed框架以及JustTrusetMe安装包
- 下一篇:PPT毕业答辩模板
相关资源
- 编程实现二维DCT变换
- 图像二值化
- 用FFT对信号进行频谱分析
- Tone-Reservation
- QGA 量子遗传算法
- 差分形式的阻滞增长模型
- 遗传算法的M文件
- 简单二阶互联系统的非线性动力学分
- 手写数字识别-模板匹配法
- Stock_Watson_动态因子分析模型
- 果蝇优化算法优化支持向量回归程序
- 自己做的一个简单GUI扑克纸牌识别-
- multi output SVR
- AR过程的线性建模过程与各种功率谱估
- PCNN TOOLBOX
- plstoolbox.zip
- 中国国家基础地理信息系统GIS数据
- 粒子群微电网优化调度
- 矩阵分析-经典教材-中文版-Roger.A.Ho
- 压缩感知TwIST
- 基于最小错误率的贝叶斯手写数字分
- 最全系统辨识源代码,包括多种最小
- 导弹制导实验
- 画跟踪精确度图的程序.zip
- 重力场大地水准面及重力异常阶次误
- prtools5.2.3工具包
- 脉冲耦合神经网络工具箱PCNN-toolbox
- SVM算法-回归拟合程序.zip
- Kriging代理模型EGO算法.zip
- Matalb实现停车场完整系统
评论
共有 条评论