资源简介
2018年IEEE进化计算大会(CEC)提出的全局优化问题的新的启发式算法。
土狼优化算法(COA)是由Juliano Pierezan和Leandro dos Santos Coelho(2018)提出的用于全局优化的自然启发的元启发式算法。

代码片段和文件信息
function [GlobalParamsGlobalMin] = COA(FOBJ lu nfevalMAXn_packsn_coy)
%% ------------------------------------------------------------------------
% Coyote Optimization Algorithm (COA) for Global Optimization.
% A nature-inspired metaheuristic proposed by Juliano Pierezan and
% Leandro dos Santos Coelho (2018).
%
% Pierezan J. and Coelho L. S. “Coyote Optimization Algorithm: A new
% metaheuristic for global optimization problems“ Proceedings of the IEEE
% Congress on Evolutionary Computation (CEC) Rio de Janeiro Brazil July
% 2018 pages 2633-2640.
%
% Example:
% FOBJ = @(x) sum(x.^2); % Optimization problem
% D = 30; % Problem dimension
% lu = [zeros(1D);ones(1D)]; % Seach space
% nfevalMAX = 10000*D; % Stopping criteria
% Np = 10; % Number of packs
% Nc = 10; % Number of coyotes
% [GlobalParamsGlobalMin] = COA_vPub(FOBJ lu nfevalMAXNpNc);
%
% Federal University of Parana (UFPR) Curitiba Parana Brazil.
% juliano.pierezan@ufpr.br
%% ------------------------------------------------------------------------
%% Optimization problem variables
D = size(lu2);
VarMin = lu(1:);
VarMax = lu(2:);
%% Algorithm parameters
if nargin < 5 n_coy = 5;
elseif n_coy < 3 error(‘At least 3 coyotes per pack!‘); end
if nargin < 4 n_packs = 20; end
% Probability of leaving a pack
p_leave = 0.005*n_coy^2;
Ps = 1/D;
%% Packs initialization (Eq. 2)
pop_total = n_packs*n_coy;
costs = zeros(pop_total1);
coyotes = repmat(VarMinpop_total1) + rand(pop_totalD).*(repmat(VarMaxpop_total1) - repmat(VarMinpop_total1));
ages = zeros(pop_total1);
packs = reshape(randperm(pop_total)n_packs[]);
coypack = repmat(n_coyn_packs1);
%% Evaluate coyotes adaptation (Eq. 3)
for c=1:pop_total
costs(c1) = FOBJ(coyotes(c:));
end
nfeval = pop_total;
%% Output variables
[GlobalMinibest] = min(costs);
GlobalParams = coyotes(ibest:);
%% Main loop
year=0;
while nfeval
%% Update the years counter
year = year + 1;
%% Execute the operations inside each pack
for p=1:n_packs
% Get the coyotes that belong to each pack
coyotes_aux = coyotes(packs(p:):);
costs_aux = costs(packs(p:):);
ages_aux = ages(packs(p:)1);
n_coy_aux = coypack(p1);
% Detect alphas according to the costs (Eq. 5)
[costs_auxinds] = sort(costs_aux‘ascend‘);
coyotes_aux = coyotes_aux(inds:);
ages_aux = ages_aux(inds:);
c_alpha = coyotes_aux(1:);
% Compute the social tendency of the pack (Eq. 6)
tendency = median(coyotes_aux1);
% Update coyotes‘ social condition
new_coyo
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 6392 2018-10-06 11:51 COA.m
文件 161 2018-10-06 11:51 Rastrigin.m
文件 645 2018-10-06 11:51 RunCOA.m
文件 1470 2018-10-06 11:51 license.txt
- 上一篇:8086仿真
- 下一篇:DrawBorad.tar.xz
相关资源
- 编程实现二维DCT变换
- 图像二值化
- 用FFT对信号进行频谱分析
- Tone-Reservation
- QGA 量子遗传算法
- 差分形式的阻滞增长模型
- 遗传算法的M文件
- 简单二阶互联系统的非线性动力学分
- 手写数字识别-模板匹配法
- Stock_Watson_动态因子分析模型
- 果蝇优化算法优化支持向量回归程序
- 自己做的一个简单GUI扑克纸牌识别-
- multi output SVR
- AR过程的线性建模过程与各种功率谱估
- PCNN TOOLBOX
- plstoolbox.zip
- 中国国家基础地理信息系统GIS数据
- 粒子群微电网优化调度
- 矩阵分析-经典教材-中文版-Roger.A.Ho
- 压缩感知TwIST
- 基于最小错误率的贝叶斯手写数字分
- 最全系统辨识源代码,包括多种最小
- 导弹制导实验
- 画跟踪精确度图的程序.zip
- 重力场大地水准面及重力异常阶次误
- prtools5.2.3工具包
- 脉冲耦合神经网络工具箱PCNN-toolbox
- SVM算法-回归拟合程序.zip
- Kriging代理模型EGO算法.zip
- Matalb实现停车场完整系统
评论
共有 条评论