资源简介
2018年IEEE进化计算大会(CEC)提出的全局优化问题的新的启发式算法。
土狼优化算法(COA)是由Juliano Pierezan和Leandro dos Santos Coelho(2018)提出的用于全局优化的自然启发的元启发式算法。
代码片段和文件信息
function [GlobalParamsGlobalMin] = COA(FOBJ lu nfevalMAXn_packsn_coy)
%% ------------------------------------------------------------------------
% Coyote Optimization Algorithm (COA) for Global Optimization.
% A nature-inspired metaheuristic proposed by Juliano Pierezan and
% Leandro dos Santos Coelho (2018).
%
% Pierezan J. and Coelho L. S. “Coyote Optimization Algorithm: A new
% metaheuristic for global optimization problems“ Proceedings of the IEEE
% Congress on Evolutionary Computation (CEC) Rio de Janeiro Brazil July
% 2018 pages 2633-2640.
%
% Example:
% FOBJ = @(x) sum(x.^2); % Optimization problem
% D = 30; % Problem dimension
% lu = [zeros(1D);ones(1D)]; % Seach space
% nfevalMAX = 10000*D; % Stopping criteria
% Np = 10; % Number of packs
% Nc = 10; % Number of coyotes
% [GlobalParamsGlobalMin] = COA_vPub(FOBJ lu nfevalMAXNpNc);
%
% Federal University of Parana (UFPR) Curitiba Parana Brazil.
% juliano.pierezan@ufpr.br
%% ------------------------------------------------------------------------
%% Optimization problem variables
D = size(lu2);
VarMin = lu(1:);
VarMax = lu(2:);
%% Algorithm parameters
if nargin < 5 n_coy = 5;
elseif n_coy < 3 error(‘At least 3 coyotes per pack!‘); end
if nargin < 4 n_packs = 20; end
% Probability of leaving a pack
p_leave = 0.005*n_coy^2;
Ps = 1/D;
%% Packs initialization (Eq. 2)
pop_total = n_packs*n_coy;
costs = zeros(pop_total1);
coyotes = repmat(VarMinpop_total1) + rand(pop_totalD).*(repmat(VarMaxpop_total1) - repmat(VarMinpop_total1));
ages = zeros(pop_total1);
packs = reshape(randperm(pop_total)n_packs[]);
coypack = repmat(n_coyn_packs1);
%% Evaluate coyotes adaptation (Eq. 3)
for c=1:pop_total
costs(c1) = FOBJ(coyotes(c:));
end
nfeval = pop_total;
%% Output variables
[GlobalMinibest] = min(costs);
GlobalParams = coyotes(ibest:);
%% Main loop
year=0;
while nfeval
%% Update the years counter
year = year + 1;
%% Execute the operations inside each pack
for p=1:n_packs
% Get the coyotes that belong to each pack
coyotes_aux = coyotes(packs(p:):);
costs_aux = costs(packs(p:):);
ages_aux = ages(packs(p:)1);
n_coy_aux = coypack(p1);
% Detect alphas according to the costs (Eq. 5)
[costs_auxinds] = sort(costs_aux‘ascend‘);
coyotes_aux = coyotes_aux(inds:);
ages_aux = ages_aux(inds:);
c_alpha = coyotes_aux(1:);
% Compute the social tendency of the pack (Eq. 6)
tendency = median(coyotes_aux1);
% Update coyotes‘ social condition
new_coyo
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 6392 2018-10-06 11:51 COA.m
文件 161 2018-10-06 11:51 Rastrigin.m
文件 645 2018-10-06 11:51 RunCOA.m
文件 1470 2018-10-06 11:51 license.txt
- 上一篇:8086仿真
- 下一篇:DrawBorad.tar.xz
相关资源
- D_star Lite.zip
- 马尔可夫链状态空间的分解实验报告
- 计算方法A上机作业
- 相位屏仿真方法.rar
- 基于高斯混合模型的背景减除
- 基于co-training的手写数字识别Multiple
- 多普勒脉冲雷达回波仿真
- kpca lda mds降维 人脸数据
- 光伏在MPPT下的boost电路
- 随机梯度下降算法
- 基础差分进化算法Rastrigin测试
- ABC带约束优化算法
- 连接二值图像中断开的点
- 车牌倾斜校正
- 卷积编解码,实现了2/33/4删余卷积
- 有源电力滤波器APF
- RBF神经网络预测
- 基于模糊控制和PID结合的倒立摆仿真
- 基本风+阵风+噪声风+渐变风联合仿真
- 瑞利信道下的分集合并技术仿真
- advisor复合电源二次开发过程
- 旅行商问题中国34省会的
- 计量经济学软件eviews6.0建模方法与操
- 机场延误 遗传算法
- MSSIM 图像相似度的计算
- 微电网虚拟同步发电寄控制模型
- flocking concrol.zip
- 蚁狮算法寻优
- 二次曲面拟合实现高程模型建立
- 角点检测Corners代码
评论
共有 条评论