资源简介
由Kevin Sheppard 2001年开发的 使用广泛的garch 工具箱。看到有人卖10个积分,遂低价共享之。
代码片段和文件信息
function [AIC BIC] = aicbic(LLF numParams numObs)
%AICBIC Akaike and Bayesian information criteria for model order selection.
% Given optimized log-likelihood function (LLF) values obtained by fitting
% models of the conditional mean and variance to a univariate return series
% compute the Akaike (AIC) and Bayesian (BIC) information criteria. Since
% information criteria penalize models with additional parameters AIC and
% BIC are model order selection criteria based on parsimony. When using
% either AIC or BIC models that minimize the criteria are preferred.
%
% [AIC BIC] = aicbic(LLF NumParams NumObs)
%
% Optional Inputs: NumObs
%
% Inputs:
% LLF - Vector of optimized log-likelihood objective function (LLF)
% values associated with parameter estimates of various models. The LLF
% values are assumed to be obtained from the estimation function GARCHFIT
% or the inference function GARCHINFER. Type “help garchfit“ or “help
% garchinfer“ for details.
%
% NumParams - Number of estimated parameters associated with each value
% in LLF. NumParams may be a scalar applied to all values in LLF or a
% vector the same length as LLF. All elements of NumParams must be
% positive integers. NumParams may be obtained from the function
% GARCHCOUNT. Type “help garchcount“ for details.
%
% Optional Input:
% NumObs - Sample sizes of the observed return series associated with each
% value of LLF. NumObs is required for computing BIC but is not needed
% for AIC. NumObs may be a scalar applied to all values in LLF or a
% vector the same length as LLF. All elements NumObs must be positive
% integers.
%
% Outputs:
% AIC - Vector of AIC statistics associated with each LLF objective
% function value. The AIC statistic is defined as:
%
% AIC = -2*LLF + 2*NumParams
%
% BIC - Vector of BIC statistics associated with each LLF objective
% function value. The BIC statistic is defined as:
%
% BIC = -2*LLF + NumParams*Log(NumObs)
%
% See also GARCHFIT GARCHINFER GARCHCOUNT GARCHDISP.
% Copyright 1999-2003 The MathWorks Inc.
% $Revision: 1.7.4.1 $ $Date: 2003/05/08 21:45:13 $
%
% References:
% Box G.E.P. Jenkins G.M. Reinsel G.C. “Time Series Analysis:
% Forecasting and Control“ 3rd edition Prentice Hall 1994.
%
%
% Ensure the optimized LLF is a vector.
%
rowLLF = logical(0);
if prod(size(LLF)) == length(LLF) % Check for a vector.
rowLLF = size(LLF1) == 1; % Flag a row vector for outputs.
LLF = LLF(:); % Convert to a column vector.
else
error(‘GARCH:aicbic:NonVectorLLF‘ ‘ ‘‘LLF‘‘ must be a vector.‘);
end
%
% Ensure NUMPARAMS is a scalar or compatible vector of positive integers.
%
if (nargin < 2)
error(‘GARCH:aicbic:UnspecifiedNumParams‘ ‘ Number of parameters ‘‘NumParams‘‘ must be
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 5036 2003-05-09 01:45 garch\aicbic.m
文件 7701 2003-05-09 01:45 garch\archtest.m
文件 8128 2003-05-09 01:45 garch\autocorr.m
文件 2450 2007-02-01 10:42 garch\Contents.m
文件 6608 2003-05-09 01:45 garch\crosscorr.m
文件 38492 2005-12-13 02:20 garch\dfARDTest.m
文件 29016 2005-12-13 02:20 garch\dfARTest.m
文件 38623 2005-12-13 02:20 garch\dfTSTest.m
文件 9728 2007-01-17 14:53 garch\egarchllf.mexw32
文件 1265 2007-01-17 14:53 garch\egarchllf.mexw32.csf
文件 19423 2003-05-09 01:45 garch\egarchllfn.m
文件 20801 2003-05-09 01:45 garch\egarchllft.m
文件 6254 2003-05-09 01:45 garch\garchar.m
文件 4433 2003-05-09 01:45 garch\garchcount.m
文件 10162 2003-05-09 01:45 garch\garchdisp.m
文件 119265 2005-06-18 00:26 garch\garchfit.m
文件 11917 2003-05-09 01:45 garch\garchget.m
文件 27599 2003-05-09 01:45 garch\garchinfer.m
文件 10752 2007-01-17 14:53 garch\garchllf.mexw32
文件 1277 2007-01-17 14:53 garch\garchllf.mexw32.csf
文件 20237 2003-05-09 01:45 garch\garchllfn.m
文件 21337 2003-05-09 01:45 garch\garchllft.m
文件 6440 2003-05-09 01:45 garch\garchma.m
文件 4109 2003-05-09 01:45 garch\garchplot.m
文件 35493 2003-05-09 01:45 garch\garchpred.m
文件 54580 2005-01-20 01:47 garch\garchset.m
文件 58413 2005-06-18 00:26 garch\garchsim.m
文件 9728 2007-01-17 14:53 garch\gjrllf.mexw32
文件 1231 2007-01-17 14:53 garch\gjrllf.mexw32.csf
文件 18559 2003-05-09 01:45 garch\gjrllfn.m
............此处省略20个文件信息
- 上一篇:操作系统英语论文
- 下一篇:DA转换锯齿波+三角波+梯形波+方波
相关资源
- 基于多项滤波的内插器
- 医学图像课程大作业-滤波反投影
- SSDA模板匹配算法
- 基于Log算子的边缘检测
- v2v信道仿真与特性研究
- VMD实现函数
- 用中值滤波和均值滤波去除高斯白噪
- 蚁群算法进行三维路径规划
- noma系统实现代码
- LDPC 编码,随机生成 H 矩阵,LLR-BP算法
- CEEMD-信息熵-完美运行,你指的拥有。
- 遗传算法函数优化三元二次函数
- 单元级联高压STATCOM仿真-cascaded_Hbrid
- 遗传算法优化bp神经网络权值和单纯
- LSSVM工具箱中文版-LS-SVM.doc
- Matalbpso优化bp网络程序-PSO-bp.rar
- 基于干扰观测器的单机械臂滑模控制
- SAR图像CFAR检测算法实现
- 经典经典的粒子群算法
- Virus Spread Model.rar
- 有效去除阴影代码效果很好.zip
- 模糊神经网络,结合模糊算法与神经
- 匹配追踪MP、正交匹配追踪算法OMP,稀
- 带约束处理的粒子群算法,简明清晰
- 二值图像的轮廓提取以及跟踪算法
- OFDM完整仿真过程与教程.zip
- 数字图像去雾处理
- 基于后投影算法穿墙雷达成像
- 风光储微网模型仿真.zip
- 三次样条插值法,求信号包络线
评论
共有 条评论