-
大小: 5KB文件类型: .zip金币: 2下载: 0 次发布日期: 2021-06-04
- 语言: 其他
- 标签: 3DCNN tensorflow
资源简介
Tensorflow 3D CNN

代码片段和文件信息
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
“““
Created on Thu Feb 23 10:51:28 2017
@author: cdn
“““
import numpy as np
np.random.seed(1234)
import timeit
import os
import matplotlib.pyplot as plt
import scipy.io as sio
from sklearn.cross_validation import StratifiedKFold
import tensorflow as tf
from tensorflow.contrib.layers import fully_connected convolution2d flatten dropout
from tensorflow.python.layers.pooling import max_pooling3d
from tensorflow.python.ops.nn import relusoftmax
from tensorflow.python.framework.ops import reset_default_graph
import six.moves.cPickle as pickle
from confusionmatrix import ConfusionMatrix
def onehot(t num_classes):
out = np.zeros((t.shape[0] num_classes))
for row col in enumerate(t):
out[row col] = 1
return out
def load_cv(cv_name = ‘index_10fold.pkl‘fold_idx = 0):
input_doc = open(cv_name‘rb‘)
in_data = pickle.load(input_doc)
input_doc.close()
train_idxtest_idx = in_data
train_index0 = train_idx[fold_idx]
test_index = test_idx[fold_idx]
val_index = test_idx[fold_idx-1]
train_index = list(set(train_index0)-set(val_index))
train_index = np.array(train_index)
return train_indextest_indexval_index
def load_data(fold_index):
data = sio.loadmat(‘ADNI/PET/Data_PET_d3.mat‘)
AD_data = data[‘AD_data_PET_d3‘]
NC_data = data[‘NORMAL_data_PET_d3‘]
# AD_data = data[‘AffineAD_128‘]
# NC_data = data[‘AffineNC_128‘]
ad_numsizeXsizeYsizeZ = AD_data.shape
nc_num___ = NC_data.shape
size_input = [1sizeXsizeYsizeZ]
np.random.seed(1234)
random_idx = np.random.permutation(ad_num+nc_num)
adnc_data = np.concatenate((AD_dataNC_data)axis=0)[random_idx]
labels = np.hstack((np.ones((ad_num))np.zeros((nc_num))))[random_idx]
trainidtestidvalidid = load_cv(fold_idx = fold_index)
x_train = adnc_data[trainid]
y_train = labels[trainid]
x_test = adnc_data[testid]
y_test = labels[testid]
x_valid = adnc_data[validid]
y_valid = labels[validid]
return x_trainy_trainx_testy_testx_validy_validsize_input
n_fold = 10
train_accuracy = np.zeros((n_fold))
test_accuracy = np.zeros((n_fold))
valid_accuracy = np.zeros((n_fold))
t1_time = timeit.default_timer()
#for fi in range(n_fold):
num_classes = 2
num_filters_conv1 = 10
num_filters_conv2 = 25
num_filters_conv3 = 40
num_filters_conv4 = 40
dense_num = 100
size_conv = 3 # [height width]
pool_size = 2
batch_size = 5
nb_epoch = 50
fi = 0
X_trainy_trainX_testy_testX_valy_valsize_input = load_data(fi)
X_train = X_train.reshape(X_train.shape[0] 1 X_train.shape[1] X_train.shape[2]X_train.shape[3])
X_val = X_val.reshape(X_val.shape[0] 1 X_val.shape[1]X_val.shape[2]X_val.shape[3])
X_test = X_test.reshape(X_test.shape[0] 1 X_test.shape[1] X_test.shape[2]X_test.shape[3])
print(‘X_train shape:‘ X_train.shape)
print(X_train.shape[0] ‘train samples‘)
print(X_val.shape[0] ‘
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2017-04-25 15:32 tensorflow3dCNN\
文件 11695 2017-04-25 15:31 tensorflow3dCNN\3D_CNN_tensorflow.py
文件 4208 2016-11-04 23:00 tensorflow3dCNN\confusionmatrix.py
相关资源
- TensorFlow1.4 官方手册
- MSCNN_dehaze.rar
- 基于双向LSTM+tensorflow中文分词
- TensorFlow Machine Learning Cookbook+无码高清
- Hands-On Machine Learning with Scikit-Learn an
- TensorFlow 官方文档中文版高清无码PD
- 基于tensorflow的深度学习图像分类案例
- 基于Tensorflow多层神经网络的MNIST手写
- TensorFlow Tutorial
- TensorFlow_2.0快速应用指南英文.tar
- tensorflow图像风格迁移代码
- TensorFlow Machine Learning Cookbook
- Learning TensorFlow: A Guide to Building Deep
- tensorflow271134
- TensorFlow for Machine Intelligence 书籍源码
- 《Hands-On Machine Learning with Scikit-Learn
- Building Machine Learning Projects with Tensor
- TensorFlow Powerful Predictive Analytics with
- 北大tensorflow学习笔记
- LSTMandRNN.zip
- 使用TensorFlow搭建智能开发系统,自动
- Packt.TensorFlow.Machine.Learning.Cookbook.201
- tensorflow深度学习CNN智能识别车牌
- Tensorflow GNN实战.zip
- tensorflow从入门到精通
- 深度卷积生成对抗网络TensorFlow代码实
- TensorFlow_中文手册
- siamese mnist 孪生网络
- TensorFlow 中文文档 1.8 掘金 2018.5.19
- Tensorflow(一)训练自己的数据集——
评论
共有 条评论