-
大小:文件类型: .zip金币: 1下载: 0 次发布日期: 2023-11-13
- 语言: 其他
- 标签: Machine Learning Scikit-Learn TensorFlow
资源简介
《Hands-On Machine Learning with Scikit-Learn and TensorFlow》代码
代码片段和文件信息
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License Version 2.0 (the “License“);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing software
# distributed under the License is distributed on an “AS IS“ BASIS
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
“““Contains a model definition for AlexNet.
This work was first described in:
ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky Ilya Sutskever and Geoffrey E. Hinton
and later refined in:
One weird trick for parallelizing convolutional neural networks
Alex Krizhevsky 2014
Here we provide the implementation proposed in “One weird trick“ and not
“ImageNet Classification“ as per the paper the LRN layers have been removed.
Usage:
with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
outputs end_points = alexnet.alexnet_v2(inputs)
@@alexnet_v2
“““
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
slim = tf.contrib.slim
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0 stddev)
def alexnet_v2_arg_scope(weight_decay=0.0005):
with slim.arg_scope([slim.conv2d slim.fully_connected]
activation_fn=tf.nn.relu
biases_initializer=tf.constant_initializer(0.1)
weights_regularizer=slim.l2_regularizer(weight_decay)):
with slim.arg_scope([slim.conv2d] padding=‘SAME‘):
with slim.arg_scope([slim.max_pool2d] padding=‘VALID‘) as arg_sc:
return arg_sc
def alexnet_v2(inputs
num_classes=1000
is_training=True
dropout_keep_prob=0.5
spatial_squeeze=True
scope=‘alexnet_v2‘):
“““AlexNet version 2.
Described in: http://arxiv.org/pdf/1404.5997v2.pdf
Parameters from:
github.com/akrizhevsky/cuda-convnet2/blob/master/layers/
layers-imagenet-1gpu.cfg
Note: All the fully_connected layers have been transformed to conv2d layers.
To use in classification mode resize input to 224x224. To use in fully
convolutional mode set spatial_squeeze to false.
The LRN layers have been removed and change the initializers from
random_normal_initializer to xavier_initializer.
Args:
inputs: a tensor of size [batch_size height width channels].
num_classes: number of predicted classes.
is_training: whether or not the model is being trained.
dropout_keep_prob: the probability that activations are kept in the dropout
layers during traini
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2016-11-25 08:34 handson-ml-master\
文件 244 2016-11-25 08:34 handson-ml-master\.binder_start
文件 112 2016-11-25 08:34 handson-ml-master\.gitignore
文件 274510 2016-11-25 08:34 handson-ml-master\01_the_machine_learning_landscape.ipynb
文件 2118822 2016-11-25 08:34 handson-ml-master\02_end_to_end_machine_learning_project.ipynb
文件 960196 2016-11-25 08:34 handson-ml-master\03_classification.ipynb
文件 743852 2016-11-25 08:34 handson-ml-master\04_training_linear_models.ipynb
文件 867639 2016-11-25 08:34 handson-ml-master\05_support_vector_machines.ipynb
文件 201263 2016-11-25 08:34 handson-ml-master\06_decision_trees.ipynb
文件 567343 2016-11-25 08:34 handson-ml-master\07_ensemble_learning_and_random_forests.ipynb
文件 1560349 2016-11-25 08:34 handson-ml-master\08_dimensionality_reduction.ipynb
文件 83498 2016-11-25 08:34 handson-ml-master\09_up_and_running_with_tensorflow.ipynb
文件 326697 2016-11-25 08:34 handson-ml-master\10_introduction_to_artificial_neural_networks.ipynb
文件 275788 2016-11-25 08:34 handson-ml-master\11_deep_learning.ipynb
文件 15732 2016-11-25 08:34 handson-ml-master\12_distributed_tensorflow.ipynb
文件 1507818 2016-11-25 08:34 handson-ml-master\13_convolutional_neural_networks.ipynb
文件 897957 2016-11-25 08:34 handson-ml-master\14_recurrent_neural_networks.ipynb
文件 328928 2016-11-25 08:34 handson-ml-master\15_autoencoders.ipynb
文件 757620 2016-11-25 08:34 handson-ml-master\16_reinforcement_learning.ipynb
文件 1927 2016-11-25 08:34 handson-ml-master\Dockerfile
文件 10175 2016-11-25 08:34 handson-ml-master\LICENSE
文件 3639 2016-11-25 08:34 handson-ml-master\README.md
目录 0 2016-11-25 08:34 handson-ml-master\datasets\
目录 0 2016-11-25 08:34 handson-ml-master\datasets\housing\
文件 3679 2016-11-25 08:34 handson-ml-master\datasets\housing\README.md
文件 1423529 2016-11-25 08:34 handson-ml-master\datasets\housing\housing.csv
文件 409488 2016-11-25 08:34 handson-ml-master\datasets\housing\housing.tgz
目录 0 2016-11-25 08:34 handson-ml-master\datasets\inception\
文件 31674 2016-11-25 08:34 handson-ml-master\datasets\inception\imagenet_class_names.txt
目录 0 2016-11-25 08:34 handson-ml-master\datasets\lifesat\
文件 4311 2016-11-25 08:34 handson-ml-master\datasets\lifesat\README.md
............此处省略70个文件信息
相关资源
- Pattern Recognition and Machine Learning(完整
- Machine Learning_Algorithms and Applications (
- Deep Learning for Computer Architects 无水印
- Numerical Algorithms Methods for Computer Visi
- Learning Go Programming azw3
- Building Machine Learning Projects with Tensor
- Mastering Machine Learning for Penetration Tes
-
Learning Typesc
ript 2.x(2nd) epub - Data Mining with R Learning with Case Studies 无
- Learning Generative Adversarial Networks epub
- Practical Reinforcement Learning 无水印pdf转
- Scala for Machine Learning(2nd)_Code 源码
- Neural Networks with R Smart models using CNN
- Mastering Machine Learning with R(2nd) 无水
- Learning Website Development with Django 无水印
- Advanced Analytics with Spark Patterns for Lea
- 吴恩达”Deep Learning.ai“第三课《Str
- Learning from data.pdf
- Neural Network and Deep Learning神经网络与深
- Learning Algorithms Through Programming and Pu
- Cinemachine.rar
- 模式识别与机器学习马春鹏, Patter
- NeuralNetworksDeepLearning_jb51.rar
- 《Deep Learning》Yann LeCun YoshuaBengio Geo
- 深度学习难得的深入浅出的教材李宏
- 吴恩达 Machine Learning Yearning 完整版 中
- Learning Bayesian Networks - Neapolitan R. E..
- 《SciPy and NumPy》中文精要版
- 文本分类竞赛调优分享.pdf
- Statistical Foundations of Machine Learning
评论
共有 条评论