资源简介
快速学习机算法,可以用来进行函数逼近和数据分类,类似于BP算法的功能,但是比BP快多了
代码片段和文件信息
function [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
% Usage: elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
% OR: [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
%
% Input:
% TrainingData_File - Filename of training data set
% TestingData_File - Filename of testing data set
% Elm_Type - 0 for regression; 1 for (both binary and multi-classes) classification
% NumberofHiddenNeurons - Number of hidden neurons assigned to the ELM
% ActivationFunction - Type of activation function:
% ‘sig‘ for Sigmoidal function
% ‘sin‘ for Sine function
% ‘hardlim‘ for Hardlim function
% ‘tribas‘ for Triangular basis function
% ‘radbas‘ for Radial basis function (for additive type of SLFNs instead of RBF type of SLFNs)
%
% Output:
% TrainingTime - Time (seconds) spent on training ELM
% TestingTime - Time (seconds) spent on predicting ALL testing data
% TrainingAccuracy - Training accuracy:
% RMSE for regression or correct classification rate for classification
% TestingAccuracy - Testing accuracy:
% RMSE for regression or correct classification rate for classification
%
% MULTI-CLASSE CLASSIFICATION: NUMBER OF OUTPUT NEURONS WILL BE AUTOMATICALLY SET EQUAL TO NUMBER OF CLASSES
% FOR EXAMPLE if there are 7 classes in all there will have 7 output
% neurons; neuron 5 has the highest output means input belongs to 5-th class
%
% Sample1 regression: [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(‘sinc_train‘ ‘sinc_test‘ 0 20 ‘sig‘)
% Sample2 classification: elm(‘diabetes_train‘ ‘diabetes_test‘ 1 20 ‘sig‘)
%
%%%% Authors: MR QIN-YU ZHU AND DR GUANG-BIN HUANG
%%%% NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE
%%%% EMAIL: EGBHUANG@NTU.EDU.SG; GBHUANG@IEEE.ORG
%%%% WEBSITE: http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
%%%% DATE: APRIL 2004
%%%%%%%%%%% Macro definition
REGRESSION=0;
CLASSIFIER=1;
%%%%%%%%%%% Load training dataset
train_data=load(TrainingData_File);
T=train_data(:1)‘;
P=train_data(:2:size(train_data2))‘;
clear train_data; % Release raw training data array
%%%%%%%%%%% Load testing dataset
test_data=load(TestingData_File);
TV.T=test_data(:1)‘;
TV.P=test_data(:2:size(test_data2))‘;
clear test_data; % Release raw testing data array
NumberofTrainingData=size(P2);
NumberofTestingData=size(TV.P2);
NumberofInputNeurons=size(P1);
if Elm_T
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 8578 2009-03-31 06:11 ELM.m
相关资源
- CodeSoft 9.0 LabelManager2.dll
- ELMO简明使用手册
- PersonnelManage.rar
- helmert方差分量估计程序
- 论文研究-多重网格方法求解两类Hel
- 基于OS-ELM的风速修正及短期风电功率
- 批量处理labelme生成的json工具
- ELMfunction.rar
- elman神经网络的源代码,包括训练和仿
- Cladopelma Kieffer from Sino-Indian Region (
- elment ui 自用元件库
- 海曼MelmannHPTA32X32传感器datesheet.rar
- IntelMausiEthernet.kext v2.3.0 黑苹果Intel系
- 以色列ELMO驱动器中文手册
- ELMO 驱动器选型手册中文
- ELMO驱动器应用手册中文
- 人脸识别kpca elm
- ELM黄广斌学术报告
- 运用双隐含层Elman神经网络进行一天
- delmia的二次开发
- 粒子群PSO优化的极限学学习机ELM
- Weighted-ELM
- DELMIA 机器人离线编程入门
- ELM极限学习机
评论
共有 条评论