资源简介
快速学习机算法,可以用来进行函数逼近和数据分类,类似于BP算法的功能,但是比BP快多了

代码片段和文件信息
function [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
% Usage: elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
% OR: [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(TrainingData_File TestingData_File Elm_Type NumberofHiddenNeurons ActivationFunction)
%
% Input:
% TrainingData_File - Filename of training data set
% TestingData_File - Filename of testing data set
% Elm_Type - 0 for regression; 1 for (both binary and multi-classes) classification
% NumberofHiddenNeurons - Number of hidden neurons assigned to the ELM
% ActivationFunction - Type of activation function:
% ‘sig‘ for Sigmoidal function
% ‘sin‘ for Sine function
% ‘hardlim‘ for Hardlim function
% ‘tribas‘ for Triangular basis function
% ‘radbas‘ for Radial basis function (for additive type of SLFNs instead of RBF type of SLFNs)
%
% Output:
% TrainingTime - Time (seconds) spent on training ELM
% TestingTime - Time (seconds) spent on predicting ALL testing data
% TrainingAccuracy - Training accuracy:
% RMSE for regression or correct classification rate for classification
% TestingAccuracy - Testing accuracy:
% RMSE for regression or correct classification rate for classification
%
% MULTI-CLASSE CLASSIFICATION: NUMBER OF OUTPUT NEURONS WILL BE AUTOMATICALLY SET EQUAL TO NUMBER OF CLASSES
% FOR EXAMPLE if there are 7 classes in all there will have 7 output
% neurons; neuron 5 has the highest output means input belongs to 5-th class
%
% Sample1 regression: [TrainingTime TestingTime TrainingAccuracy TestingAccuracy] = elm(‘sinc_train‘ ‘sinc_test‘ 0 20 ‘sig‘)
% Sample2 classification: elm(‘diabetes_train‘ ‘diabetes_test‘ 1 20 ‘sig‘)
%
%%%% Authors: MR QIN-YU ZHU AND DR GUANG-BIN HUANG
%%%% NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE
%%%% EMAIL: EGBHUANG@NTU.EDU.SG; GBHUANG@IEEE.ORG
%%%% WEBSITE: http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
%%%% DATE: APRIL 2004
%%%%%%%%%%% Macro definition
REGRESSION=0;
CLASSIFIER=1;
%%%%%%%%%%% Load training dataset
train_data=load(TrainingData_File);
T=train_data(:1)‘;
P=train_data(:2:size(train_data2))‘;
clear train_data; % Release raw training data array
%%%%%%%%%%% Load testing dataset
test_data=load(TestingData_File);
TV.T=test_data(:1)‘;
TV.P=test_data(:2:size(test_data2))‘;
clear test_data; % Release raw testing data array
NumberofTrainingData=size(P2);
NumberofTestingData=size(TV.P2);
NumberofInputNeurons=size(P1);
if Elm_T
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 8578 2009-03-31 06:11 ELM.m
相关资源
- vue+elmentui+ueditor +KityFormula数学公式 编
- OdooHotelManagementSystem 基于Odoo的酒店管
- Acer TravelMate8100系列笔记本
- Acer TravelMate8000系列笔记本
- Acer TravelMate3200系列笔记本
- Acer TravelMate3000系列笔记本
- Acer TravelMate4100系列笔记本
- Acer TravelMate C300系列笔记本
- Acer TravelMate C110系列笔记本
- Acer TravelMate 4650系列笔记本
- 基于HHT-CS-ELM的瓦斯涌出量时序预测
- 基于GA-ELM的瓦斯涌出量预测
- Telmisartan延缓血管内皮细胞衰老及p2
- ELM327中文说明书
- Elmo公司驱动器软件手册
-
Fundamentals of Databa
se Systems(ElmasriN - 贝叶斯数据分析 Third Edition (C - Gel
- delmia教程-发动机装配
- 经典的delmia学习资料
- OS-ELM在线序列极限学习机
- DELMIA 机器人离线编程入门.pdf
- delmia simulation
- vue+elmentui+ueditor +数学公式 编辑器。完
- Qt酒店管理系统
- 以色列Elmo驱动器+Kollmorgen TBMS无框直驱
- Design PatternsBy Gamma Helm Johnson and Vliss
- 主成分极限学习机.rar
- elmo驱动器上位机软件
- Delmia教程.rar
- window下的标注工具labelme.32位64位各一
评论
共有 条评论