资源简介
基于遗传算法的SVM方法,有源代码参考!!
代码片段和文件信息
function [featureseigveceigvals] = AFE(Xskernel kernel_parsXtypenbeigveceigvals)
% Automatic Feature Extraction by Nystr鰉 method
%
%
% >> features = AFE(X kernel sig2 Xt)
%
% Description
% Using the Nystr鰉 approximation method the mapping of data to
% the feature space can be evaluated explicitly. This gives the
% features that one can use for a linear regression or
% classification. The decomposition of the mapping to the feature
% space relies on the eigenvalue decomposition of the kernel
% matrix. The Matlab (‘eigs‘) or Nystr鰉‘s (‘eign‘) approximation
% using the nb most important eigenvectors/eigenvalues can be
% used. The eigenvalue decomposition is not re-calculated if it is
% passed as an extra argument. This routine internally calls a cmex file.
%
% Full syntax
%
% >> [features U lam] = AFE(X kernel sig2 Xt)
% >> [features U lam] = AFE(X kernel sig2 Xt type)
% >> [features U lam] = AFE(X kernel sig2 Xt type nb)
% >> features = AFE(X kernel sig2 Xt [][] U lam)
%
% Outputs
% features : Nt x nb matrix with extracted features
% U(*) : N x nb matrix with eigenvectors
% lam(*) : nb x 1 vector with eigenvalues
% Inputs
% X : N x d matrix with input data
% kernel : Name of the used kernel (e.g. ‘RBF_kernel‘)
% sig2 : parameter of the used kernel
% Xt : Data from which the features are extracted
% type(*): ‘eig‘(*) ‘eigs‘ or ‘eign‘
% nb(*) : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation
% U(*) : N x nb matrix with eigenvectors
% lam(*) : nb x 1 vector with eigenvalues
%
% See also:
% kernel_matrix RBF_kernel demo_fixedsize
% Copyright (c) 2002 KULeuven-ESAT-SCD License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab
[Ndim] = size(X);
[Ncdim] = size(Xs);
eval(‘type;‘‘type=‘‘eig‘‘;‘);
if ~(strcmp(type‘eig‘) | strcmp(type‘eigs‘) | strcmp(type‘eign‘))
error(‘Type needs to be ‘‘eig‘‘ ‘‘eigs‘‘ or ‘‘eign‘‘...‘);
end
% eigenvalue decomposition to do..
if nargin<=6
omega = kernel_matrix(Xs kernel kernel_pars);
if strcmp(type‘eig‘)
[eigveceigvals] = eig(omega+2*eye(size(omega1))); % + jitter factor
eigvals = diag(eigvals);
elseif strcmp(type‘eigs‘)
eval(‘nb;‘‘nb=min(size(omega1)10);‘);
[eigveceigvals] = eigs(omega+2*eye(size(omega1))nb); % + jitter factor
elseif strcmp(type‘eign‘)
eval(‘nb;‘‘nb=min(size(omega1)10);‘);
[eigveceigvals] = eign(omega+2*eye(size(omega1))nb); % + jitter factor
end
eigvals = (eigvals-2)/Nc;
peff = eigvals>eps;
eigvals = eigvals(peff);
eigvec = eigvec(:peff);
end
% Cmex
features = phitures(Xs‘X‘eigveceigvalskernel kernel_pars);
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 2738 2003-02-21 22:39 LS-SVMlab-GA\AFE.m
文件 5785 2003-02-21 22:39 LS-SVMlab-GA\bay_errorbar.m
文件 2003 2003-02-21 22:39 LS-SVMlab-GA\bay_initlssvm.m
文件 10345 2003-02-21 22:39 LS-SVMlab-GA\bay_lssvm.m
文件 8187 2003-02-21 22:39 LS-SVMlab-GA\bay_lssvmARD.m
文件 9358 2003-02-21 22:39 LS-SVMlab-GA\bay_modoutClass.m
文件 5977 2003-02-21 22:39 LS-SVMlab-GA\bay_optimize.m
文件 4178 2003-02-21 22:39 LS-SVMlab-GA\bay_rr.m
文件 164 2008-05-19 13:04 LS-SVMlab-GA\buffer.mc
文件 5632 2003-02-21 22:39 LS-SVMlab-GA\changelssvm.m
文件 4245 2003-02-21 22:39 LS-SVMlab-GA\code.m
文件 2118 2003-02-21 22:39 LS-SVMlab-GA\codedist_bay.m
文件 756 2003-02-21 22:39 LS-SVMlab-GA\codedist_hamming.m
文件 2018 2003-02-21 22:39 LS-SVMlab-GA\codedist_loss.m
文件 4125 2003-02-21 22:39 LS-SVMlab-GA\codelssvm.m
文件 5197 2003-02-21 22:39 LS-SVMlab-GA\code_ECOC.m
文件 550 2003-02-21 22:39 LS-SVMlab-GA\code_MOC.m
文件 364 2003-02-21 22:39 LS-SVMlab-GA\code_OneVsAll.m
文件 555 2003-02-21 22:39 LS-SVMlab-GA\code_OneVsOne.m
文件 8174 2003-02-21 22:39 LS-SVMlab-GA\crossvalidate.m
文件 1886 2003-02-21 22:39 LS-SVMlab-GA\deltablssvm.m
文件 3369 2003-02-21 22:39 LS-SVMlab-GA\democlass.m
文件 3864 2003-02-21 22:39 LS-SVMlab-GA\demofun.m
文件 4747 2003-02-21 22:39 LS-SVMlab-GA\demomodel.m
文件 2239 2003-02-21 22:39 LS-SVMlab-GA\demo_fixedclass.m
文件 3099 2003-02-21 22:39 LS-SVMlab-GA\demo_fixedsize.m
文件 3337 2003-02-21 22:39 LS-SVMlab-GA\demo_yinyang.m
文件 3507 2003-02-21 22:39 LS-SVMlab-GA\denoise_kpca.m
文件 3414 2003-02-21 22:39 LS-SVMlab-GA\eign.m
文件 226 2008-05-19 17:38 LS-SVMlab-GA\fitness.m
............此处省略68个文件信息
- 上一篇:eagle 原理图转ad原理图脚本
- 下一篇:webSocket 搭建
相关资源
- 按键控制 verilog程序 钢琴演奏 fpga
- RS232接口的FPGA程序设计VHDL
- PS2键盘控制模型电子琴电路设计
- 很详细的EM算法,GMM,HMM训练用
- 32位CRC FPGA Verilog并行算法
- libsvm 数据格式转换宏命令---FormatDat
- Togaf 9 鉴定级 真题题库1(含答案)
- 遗传算法最优保留
- 基于FPGA的篮球倒计时的设计和实现
- atmega16 蓝牙通信,舵机控制
- GGA数据解析源码
- cocos creator的2048游戏源码
- Altera FPGA Cyclone_V_E 原理图和封装库
- 基于FPGA实现的自适应卡尔曼滤波器的
- 基于FPGA的直流电机PWM控制器设计
- Pegasus ImagXpress Standard v 8 + 正版序列号
- 基于atmega16的modbus通信
- NeQuick模型
- FPGA数字信号处理七级联型IIR滤波器
- 基于FPGA的AES加密算法的高速实现
- (WGAN、WGAN_gp)Wasseratein GAN
- CGANConditional Generative Adversarial Nets
- FormatDatalibsvm转换数据格式为libsvm要求
-
Niagara fr
amework 最佳实践FAQ - FPGA电子时钟 用verilog语言 可实现时间
- 遗传算法 NSGA II
- 标准VGA接口详细资料
- DC2AC converter with SVM in Plecs
- 改进的快速Mersenne twister随机数算法
- ATmega2560_Library.SchLib
评论
共有 条评论