资源简介
voicebox工具箱
代码片段和文件信息
function [levaffsovad]=activlev(spfsmode)
%ACTIVLEV Measure active speech level as in ITU-T P.56 [LEVAFFSO]=(spFSMODE)
%
%Usage: (1) lev=activlev(sfs); % speech level in units of power
% (2) db=activlev(sfs‘d‘); % speech level in dB
% (3) s=activlev(sfs‘n‘); % normalize active level to 0 dB
%
%Inputs: sp is the speech signal (with better than 20dB SNR)
% FS is the sample frequency in Hz (see also FSO below)
% MODE is a combination of the following:
% r - raw omit input filters (default is 200 Hz to 5.5 kHz)
% 0 - no high pass filter (i.e. include DC)
% 4 - high pass filter at 40 Hz (but allows mains hum to pass)
% 1 - use cheybyshev 1 filter
% 2 - use chebyshev 2 filter (default)
% e - use elliptic filter
% h - omit low pass filter at 5.5 kHz
% d - give outputs in dB rather than power
% n - output a normalized speech signal as the first argument
% N - output a normalized filtered speech signal as the first argument
% l - give both active and long-term power levels
% a - include A-weighting filter
% i - include ITU-R-BS.468/ITU-T-J.16 weighting filter
%Outputs:
% If the “n“ option is specified a speech signal normalized to 0dB will be given as
% the first output followed by the other outputs.
% LEV gives the speech level in units of power (or dB if mode=‘d‘)
% if mode=‘l‘ is specified LEV is a row vector with the “long term
% level“ as its second element (this is just the mean power)
% AF is the activity factor (or duty cycle) in the range 0 to 1
% FSO is a column vector of intermediate information that allows
% you to process a speech signal in chunks. Thus:
%
% fso=fs; for i=1:inc:nsamp [levfso]=activlev(sp(i:i+inc-1)fsomode); end
%
% is equivalent to: lev=activlev(sp(1:nsamp)fsmode)
%
% but is much slower. The two methods will not give identical results
% because they will use slightly different thresholds.
% VAD is a boolean vector the same length as sp that acts as an approximate voice activity detector
%For completeness we list here the contents of the FSO structure:
%
% ffs : sample frequency
% fmd : mode string
% nh : hangover time in samples
% ae : smoothing filter coefs
% bl : 200Hz HP filter numerator
% al : 200Hz HP filter denominator
% bh : 5.5kHz LP filter numerator
% ah : 5.5kHz LP filter denominator
% ze : smoothing filter state
% zl : 200Hz HP filter state
% zh : 5.5kHz LP filter state
% zx : hangover max filter state
% emax : maximum envelope exponent + 1
% ssq : signal sum of squares
% ns : number of signal samples
% ss : sum of speech samples (not actually used here)
% kc : cumulative occupancy counts
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 12424 2012-11-19 09:19 activlev.m
文件 1793 2011-10-16 15:45 atan2sc.m
文件 2112 2012-10-26 11:36 axisenlarge.m
文件 4465 2011-10-16 15:45 bark2frq.m
文件 3305 2011-10-16 15:45 bitsprec.m
文件 2469 2011-10-16 15:45 cblabel.m
文件 2013 2011-10-16 15:45 ccwarpf.m
文件 2046 2013-07-04 08:03 cent2frq.m
文件 2131 2011-10-16 15:45 cep2pow.m
文件 2239 2011-10-16 15:45 choosenk.m
文件 1603 2011-10-16 15:45 choosrnk.m
文件 13059 2013-08-23 10:37 Contents.m
文件 3975 2010-09-24 18:08 correlogram.m
文件 3819 2011-10-16 15:45 distchar.m
文件 3422 2011-10-16 15:45 distchpf.m
文件 3688 2011-10-16 15:45 disteusq.m
文件 4641 2011-10-16 15:45 distisar.m
文件 3736 2011-10-16 15:45 distispf.m
文件 4170 2011-10-16 15:45 distitar.m
文件 3601 2011-10-16 15:45 distitpf.m
文件 1982 2011-10-16 15:45 ditherq.m
文件 2746 2011-10-16 15:45 dlyapsq.m
文件 3479 2013-05-02 13:53 dualdiag.m
文件 26494 2013-06-13 22:17 dypsa.m
文件 5073 2013-07-23 11:07 enfr
文件 3906 2011-10-16 15:45 entropy.m
文件 2733 2011-10-16 15:45 erb2frq.m
文件 7306 2013-08-23 13:33 estnoiseg.m
文件 16236 2012-03-31 17:42 estnoisem.m
文件 2461 2011-10-16 15:45 ewgrpdel.m
文件 3467 2013-06-14 10:10 fig2emf.m
............此处省略206个文件信息
- 上一篇:上海师范大学计算机网络与通讯研究生15
- 下一篇:视听说辅助工具V6.0
相关资源
- Qt 语音合成 文字转语音
- UWB system
- 图像亚像素平移
- 模型与模型验证.zip
- coursera斯坦福机器学习公开课支持向量
- FastSLAM算法模型
- SAX符号化序列范例源码
- 傅里叶特征描述子图像匹配
- 光伏三相逆变的有功无功调节锁相环
- 光流图像配准
- SVM with mosek for banana
- 应用牛顿法求方程cos(x)cosh(x)-
- 电动汽车有序充放电.rar
- 二自由度机械臂模糊PID控制.zip
- ldpc完整的系统编译仿真
- 降维的相关方法
- 图像融合代码
- attachment_1487958_16b_win64_2017-05-10
- FMCW Waveform Design.rar
- 自适应信号 利用自适应信号分离器,
- 车牌识别.rar
- 2011经典EPSDE文章源代码
- 动态避障仿真.rar
- Neural Network Design Demonstration
- Bursa 7参数的精确算法
- 小波变换算法
- NPCR&UACI;.zip
- 基于household的QR分解
- Roberts算子
- sheffield_gatbx工具箱
评论
共有 条评论