资源简介
模拟退火 遗传算法 粒子群算法 鲁棒性强
代码片段和文件信息
function varargout = GODLIKE(funfcn ...
varargin)
% GODLIKE Global optimizer combining the power of a
% - Genetic algorithm
% - Diffential Evolution algorithm
% - Particle Swarm Optimization algorithm
% - Adaptive Simulated Annealing algorithm
%
% Usage:
%
% (Single-objective optimization)
%================================
% sol = GODLIKE(obj_fun)
% sol = GODLIKE(obj_fun lb ub)
% sol = GODLIKE(... ub Ab)
% sol = GODLIKE(... b Aeqbeq)
% sol = GODLIKE(... beq confcn)
% sol = GODLIKE(... confcn intcon)
% sol = GODLIKE(... intcon options)
% sol = GODLIKE(... intcon ‘option‘ value ...)
%
% [sol fval] = GODLIKE(...)
% [sol fval exitflag] = GODLIKE(...)
% [sol fval exitflag output] = GODLIKE(...)
%
%
% (Multi-objective optimization)
% ==============================
% sol = GODLIKE(obj_fun12... lb ub ...)
% sol = GODLIKE({obj_fun1 obj_fun2...} lb ub ...)
%
% [sol fval] = GODLIKE(...)
% [... fval Pareto_front] = GODLIKE(...)
% [... Pareto_front Pareto_Fvals] = GODLIKE(...)
% [... Pareto_Fvals exitflag] = GODLIKE(...)
% [... exitflag output] = GODLIKE(...)
%
%
% INPUT ARGUMENTS:
% ================
%
% obj_fun The objective function of which the global minimum
% will be determined (function_handle). For multi-
% objective optimization several objective functions
% may be provided as a cell array of function handles
% or alternatively in a single function that returns
% the different function values along the second
% dimension.
% objective functions must accept either a [popsize x
% dimensions] matrix argument or a [1 x dimensions]
% vector argument and return a [popsize x number of
% objectives] matrix or [1 x number of objective]
% vector of associated function values (number of
% objectives may be 1). With the first format the
% function is evaluated vectorized in the second
% case CELLFUN() is used which is a bit slower in
% general.
%
% lb ub The lower and upper bounds of the problem‘s search
% space for each dimension. May be scalar in case all
% bounds in all dimensions are equal. Note that at
% least ONE of these must have a size of [1 x
% dimensions] since the problem‘s dimensionality is
% derived from it.
%
% Ab Linear inequality and linear equality constraints
% Aeq beq respectively; not yet fully implemented.
%
% conFcn Non-linear constraint function(
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@objFunction\
文件 37890 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@objFunction\objFunction.m
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\
文件 615 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\evaluateFunction.m
文件 2328 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\initializeAlgorithms.m
文件 607 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\iterate.m
文件 6451 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\nonDominatedSort.m
文件 3676 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\popMulti.m
文件 1743 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\tournamentSelection.m
文件 2916 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\updateAlgorithms.m
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\
文件 3597 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\constructPop.m
文件 16585 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\createOffspring.m
文件 1835 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\evaluateFunction.m
文件 2027 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\honorBounds.m
文件 6151 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\initializeAlgorithms.m
文件 1177 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\iterate.m
文件 1213 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\penalize.m
文件 3651 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\popSingle.m
文件 5498 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\replaceParents.m
文件 998 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\tournamentSelection.m
文件 802 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\wrapperFcn.m
文件 50260 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\GODLIKE.m
文件 9474 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\GODLIKE_DEMO.m
文件 4086 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\changelog.txt
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\
文件 83 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\.gitignore
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\TeX source\
文件 83 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\TeX source\.gitignore
文件 19326 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\TeX source\GODLIKE.tex
............此处省略13个文件信息
- 上一篇:装饰者模式结合模板方法模式实现奶茶商店
- 下一篇:北极星Notthstar注册机
相关资源
- 基于粒子群算法的物流中心选址
- 遗传算法求解RCPSP问题
- 遗传算法小车避障问题
- 选址分配-遗传算法
- 遗传算法优化支持向量机
- 基于遗传算法的小波神经网络交通流
- 论文研究-基于遗传算法的LuGre摩擦模
- 城市遍历问题求解模拟退火算法
- 粒子群优化算法编码
- AGA自适应加速遗传算法
- 论文研究-基于改进粒子群算法的滑模
- 论文研究-可计算一般均衡CGE模型的遗
- 粒子群优化RBF神经网络的光伏阵列故
- 粒子群优化灰色模型
- 一种基于遗传算法的无线传感器网络
- 基于遗传算法的避障轨迹规划六自由
- 用混合遗传算法求解物流配送路径优
- 基于遗传算法的配送中心选址问题求
- 粒子群解决TSP
- 遗传算法在车间设备布局中的应用
- 遗传算法优化BP神经网络
- 使用粒子群算法求解最优问题
- 多目标粒子群源代码,非常详细的注
- 遗传算法(三角形判定)
- GA优化LSTM网络.zip
- 使用遗传算法PID整定寻优 代码和仿真
- Ansys遗传算法优化
- 遗传算法两基因度与多基因度
- 基于遗传算法的阵列天线赋形波束综
- 多目标优化遗传算法实现
评论
共有 条评论