资源简介
模拟退火 遗传算法 粒子群算法 鲁棒性强

代码片段和文件信息
function varargout = GODLIKE(funfcn ...
varargin)
% GODLIKE Global optimizer combining the power of a
% - Genetic algorithm
% - Diffential Evolution algorithm
% - Particle Swarm Optimization algorithm
% - Adaptive Simulated Annealing algorithm
%
% Usage:
%
% (Single-objective optimization)
%================================
% sol = GODLIKE(obj_fun)
% sol = GODLIKE(obj_fun lb ub)
% sol = GODLIKE(... ub Ab)
% sol = GODLIKE(... b Aeqbeq)
% sol = GODLIKE(... beq confcn)
% sol = GODLIKE(... confcn intcon)
% sol = GODLIKE(... intcon options)
% sol = GODLIKE(... intcon ‘option‘ value ...)
%
% [sol fval] = GODLIKE(...)
% [sol fval exitflag] = GODLIKE(...)
% [sol fval exitflag output] = GODLIKE(...)
%
%
% (Multi-objective optimization)
% ==============================
% sol = GODLIKE(obj_fun12... lb ub ...)
% sol = GODLIKE({obj_fun1 obj_fun2...} lb ub ...)
%
% [sol fval] = GODLIKE(...)
% [... fval Pareto_front] = GODLIKE(...)
% [... Pareto_front Pareto_Fvals] = GODLIKE(...)
% [... Pareto_Fvals exitflag] = GODLIKE(...)
% [... exitflag output] = GODLIKE(...)
%
%
% INPUT ARGUMENTS:
% ================
%
% obj_fun The objective function of which the global minimum
% will be determined (function_handle). For multi-
% objective optimization several objective functions
% may be provided as a cell array of function handles
% or alternatively in a single function that returns
% the different function values along the second
% dimension.
% objective functions must accept either a [popsize x
% dimensions] matrix argument or a [1 x dimensions]
% vector argument and return a [popsize x number of
% objectives] matrix or [1 x number of objective]
% vector of associated function values (number of
% objectives may be 1). With the first format the
% function is evaluated vectorized in the second
% case CELLFUN() is used which is a bit slower in
% general.
%
% lb ub The lower and upper bounds of the problem‘s search
% space for each dimension. May be scalar in case all
% bounds in all dimensions are equal. Note that at
% least ONE of these must have a size of [1 x
% dimensions] since the problem‘s dimensionality is
% derived from it.
%
% Ab Linear inequality and linear equality constraints
% Aeq beq respectively; not yet fully implemented.
%
% conFcn Non-linear constraint function(
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@objFunction\
文件 37890 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@objFunction\objFunction.m
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\
文件 615 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\evaluateFunction.m
文件 2328 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\initializeAlgorithms.m
文件 607 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\iterate.m
文件 6451 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\nonDominatedSort.m
文件 3676 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\popMulti.m
文件 1743 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\tournamentSelection.m
文件 2916 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popMulti\updateAlgorithms.m
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\
文件 3597 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\constructPop.m
文件 16585 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\createOffspring.m
文件 1835 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\evaluateFunction.m
文件 2027 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\honorBounds.m
文件 6151 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\initializeAlgorithms.m
文件 1177 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\iterate.m
文件 1213 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\penalize.m
文件 3651 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\popSingle.m
文件 5498 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\replaceParents.m
文件 998 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\tournamentSelection.m
文件 802 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\@popSingle\wrapperFcn.m
文件 50260 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\GODLIKE.m
文件 9474 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\GODLIKE_DEMO.m
文件 4086 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\changelog.txt
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\
文件 83 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\.gitignore
目录 0 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\TeX source\
文件 83 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\TeX source\.gitignore
文件 19326 2018-06-20 09:50 rodyo-FEX-GODLIKE-dcadb3a\documentation\TeX source\GODLIKE.tex
............此处省略13个文件信息
- 上一篇:装饰者模式结合模板方法模式实现奶茶商店
- 下一篇:北极星Notthstar注册机
相关资源
- 基于遗传算法与Weibull模型的软土地基
- QGA 量子遗传算法
- 基于遗传算法的排课系统
- 遗传算法的M文件
- 遗传算法PPT(Genetic_Algorithms.ppt)
- 遗传算法的堆石料非线性本构模型参
- 自适应粒子群优化算法及其应用
- 遗传算法越野小车unity5.5
- 车间布局遗传算法
- 模拟退火算法解多元函数极值.rar
- 粒子群微电网优化调度
- 微电网PSO优化算法
- 遗传算法论文11篇
- 基于遗传算法的立体车库车位调度研
- 粒子群算法参考论文权威
- Particle Swarm Optimization粒子群算法原版
- 遗传算法解决TSP旅行商问题程序开源
- 基于GA-ELM的瓦斯涌出量预测
- 基于粒子群算法优化RBF神经网络的异
- 5种多旅行商问题(MTSP)的遗传算法
- 人工智能和遗传算法的结合推荐必读
- 遗传算法0-1背包问题论文
- 改进的k_均值聚类排挤小生境遗传算法
- 论文研究-基于优化支持向量机的人脸
- 基于遗传优化的无刷直流电机模糊控
- GA+ICP代码
- 计算智能大作业合集
- 遗传算法与工程优化_玄光男_程润伟
- 粒子群优化及智能故障诊断
- NSGA和NSGAII算法
评论
共有 条评论