资源简介
一键运行,实现emd,eemd,ceemd去噪,
代码片段和文件信息
function [modes its]=ceemdan(xNstdNRMaxIter)
% WARNING: for this code works it is necessary to include in the same
%directoy the file emd.m developed by Rilling and Flandrin.
%This file is available at %http://perso.ens-lyon.fr/patrick.flandrin/emd.html
%We use the default stopping criterion.
%We use the last modification: 3.2007
%
% This version was run on Matlab 7.10.0 (R2010a)
%----------------------------------------------------------------------
% INPUTs
% x: signal to decompose
% Nstd: noise standard deviation
% NR: number of realizations
% MaxIter: maximum number of sifting iterations allowed.
%
% OUTPUTs
% modes: contain the obtained modes in a matrix with the rows being the modes
% its: contain the sifting iterations needed for each mode for each realization (one row for each realization)
% -------------------------------------------------------------------------
% Syntax
%
% modes=ceemdan(xNstdNRMaxIter)
% [modes its]=ceemdan(xNstdNRMaxIter)
%
%--------------------------------------------------------------------------
% This algorithm was presented at ICASSP 2011 Prague Czech Republic
% Plese if you use this code in your work please cite the paper where the
% algorithm was first presented.
% If you use this code please cite:
%
% M.E.TORRES M.A. COLOMINAS G. SCHLOTTHAUER P. FLANDRIN
% “A complete Ensemble Empirical Mode decomposition with adaptive noise“
% IEEE Int. Conf. on Acoust. Speech and Signal Proc. ICASSP-11 pp. 4144-4147 Prague (CZ)
%
% -------------------------------------------------------------------------
% Date: June 062011
% Authors: Torres ME Colominas MA Schlotthauer G Flandrin P.
% For problems with the code please contact the authors:
% To: macolominas(AT)bioingenieria.edu.ar
% CC: metorres(AT)santafe-conicet.gov.ar
% -------------------------------------------------------------------------
x=x(:)‘;
desvio_x=std(x);
x=x/desvio_x;
modes=zeros(size(x));
temp=zeros(size(x));
aux=zeros(size(x));
acum=zeros(size(x));
iter=zeros(NRround(log2(length(x))+5));
for i=1:NR
white_noise{i}=randn(size(x));%creates the noise realizations
end;
for i=1:NR
modes_white_noise{i}=emd(white_noise{i});%calculates the modes of white gaussian noise
end;
for i=1:NR %calculates the first mode
temp=x+Nstd*white_noise{i};
[temp o it]=emd(temp‘MAXMODES‘1‘MAXITERATIONS‘MaxIter);
temp=temp(1:);
aux=aux+temp/NR;
iter(i1)=it;
end;
modes=aux; %saves the first mode
k=1;
aux=zeros(size(x));
acum=sum(modes1);
while nnz(diff(sign(diff(x-acum))))>2 %calculates the rest of the modes
for i=1:NR
tamanio=size(modes_white_noise{i});
if tamanio(1)>=k+1
noise=modes_white_noise{i}(k:);
noise=noise/std(noise);
noise=Nstd*noise;
try
[temp o it]=emd(x-acum+std(x-acum)*noise‘MAXMODES‘1‘MAXITE
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 3560 2018-08-03 10:24 去噪整合\ceemdan.m
文件 72914 2018-08-02 08:33 去噪整合\DATA073001.mat
文件 84013 2018-08-03 11:59 去噪整合\DATA080301.mat
文件 5276 2018-08-03 09:08 去噪整合\eemd.m
文件 22274 2018-08-03 10:27 去噪整合\emd.m
文件 4361 2018-08-03 09:10 去噪整合\extrema.m
文件 1291 2018-08-03 11:54 去噪整合\main_quzao.m
文件 2973 2018-08-03 10:22 去噪整合\ssa1.m
目录 0 2018-08-03 12:00 去噪整合
----------- --------- ---------- ----- ----
196662 9
- 上一篇:ELMO-COMPOSER软件使用说明
- 下一篇:VMD去噪方法对时间序列进行去燥
相关资源
- 24小时带光伏蓄电池微电网仿真
- BP神经网络算法,内含3个程序,直接
- 偏最小二乘回归算法
- 光纤色散计算
- mimo信道容量及和速率的仿真代码
- 小波重构+高频滤波
- 电偶极子磁场在静态和高速运动状态
- 维纳滤波应用
- mimo-odfm仿真
- 图像分割效果评价
- 基于分数阶傅里叶变换的相位迭代图
- SAR经典的wk成像算法.zip
- 遗传算法小车避障问题
- 选址分配-遗传算法
- 33节点潮流计算代码
- PID控制Matalb经典算法
- 2018年国赛b题代码RGV动态调度
- 各种体制雷达信号仿真
- 心电信号预处理去噪
- 7-band EQ均衡器算法
- 永磁同步电机直接转矩控制仿真-矩阵
- 各种智能算法程序以求函数最值为例
- 模糊PI控制器回馈好朋友的帮助帮助其
- 希尔伯特变换求瞬时幅度相位和频率
- 两级倒立摆仿真模型的GUI控制界面-
- 永磁同步电机模糊PID控制-sl10.slx
- 我收集到得一些人脸识别的程序和大
- 基于遗传算法的小波神经网络交通流
- 初学写的第一个gui学生成绩查询系统
- 图像识别程序土豆形貌识别-土豆形貌
评论
共有 条评论