资源简介
一键运行,实现emd,eemd,ceemd去噪,

代码片段和文件信息
function [modes its]=ceemdan(xNstdNRMaxIter)
% WARNING: for this code works it is necessary to include in the same
%directoy the file emd.m developed by Rilling and Flandrin.
%This file is available at %http://perso.ens-lyon.fr/patrick.flandrin/emd.html
%We use the default stopping criterion.
%We use the last modification: 3.2007
%
% This version was run on Matlab 7.10.0 (R2010a)
%----------------------------------------------------------------------
% INPUTs
% x: signal to decompose
% Nstd: noise standard deviation
% NR: number of realizations
% MaxIter: maximum number of sifting iterations allowed.
%
% OUTPUTs
% modes: contain the obtained modes in a matrix with the rows being the modes
% its: contain the sifting iterations needed for each mode for each realization (one row for each realization)
% -------------------------------------------------------------------------
% Syntax
%
% modes=ceemdan(xNstdNRMaxIter)
% [modes its]=ceemdan(xNstdNRMaxIter)
%
%--------------------------------------------------------------------------
% This algorithm was presented at ICASSP 2011 Prague Czech Republic
% Plese if you use this code in your work please cite the paper where the
% algorithm was first presented.
% If you use this code please cite:
%
% M.E.TORRES M.A. COLOMINAS G. SCHLOTTHAUER P. FLANDRIN
% “A complete Ensemble Empirical Mode decomposition with adaptive noise“
% IEEE Int. Conf. on Acoust. Speech and Signal Proc. ICASSP-11 pp. 4144-4147 Prague (CZ)
%
% -------------------------------------------------------------------------
% Date: June 062011
% Authors: Torres ME Colominas MA Schlotthauer G Flandrin P.
% For problems with the code please contact the authors:
% To: macolominas(AT)bioingenieria.edu.ar
% CC: metorres(AT)santafe-conicet.gov.ar
% -------------------------------------------------------------------------
x=x(:)‘;
desvio_x=std(x);
x=x/desvio_x;
modes=zeros(size(x));
temp=zeros(size(x));
aux=zeros(size(x));
acum=zeros(size(x));
iter=zeros(NRround(log2(length(x))+5));
for i=1:NR
white_noise{i}=randn(size(x));%creates the noise realizations
end;
for i=1:NR
modes_white_noise{i}=emd(white_noise{i});%calculates the modes of white gaussian noise
end;
for i=1:NR %calculates the first mode
temp=x+Nstd*white_noise{i};
[temp o it]=emd(temp‘MAXMODES‘1‘MAXITERATIONS‘MaxIter);
temp=temp(1:);
aux=aux+temp/NR;
iter(i1)=it;
end;
modes=aux; %saves the first mode
k=1;
aux=zeros(size(x));
acum=sum(modes1);
while nnz(diff(sign(diff(x-acum))))>2 %calculates the rest of the modes
for i=1:NR
tamanio=size(modes_white_noise{i});
if tamanio(1)>=k+1
noise=modes_white_noise{i}(k:);
noise=noise/std(noise);
noise=Nstd*noise;
try
[temp o it]=emd(x-acum+std(x-acum)*noise‘MAXMODES‘1‘MAXITE
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 3560 2018-08-03 10:24 去噪整合\ceemdan.m
文件 72914 2018-08-02 08:33 去噪整合\DATA073001.mat
文件 84013 2018-08-03 11:59 去噪整合\DATA080301.mat
文件 5276 2018-08-03 09:08 去噪整合\eemd.m
文件 22274 2018-08-03 10:27 去噪整合\emd.m
文件 4361 2018-08-03 09:10 去噪整合\extrema.m
文件 1291 2018-08-03 11:54 去噪整合\main_quzao.m
文件 2973 2018-08-03 10:22 去噪整合\ssa1.m
目录 0 2018-08-03 12:00 去噪整合
----------- --------- ---------- ----- ----
196662 9
- 上一篇:ELMO-COMPOSER软件使用说明
- 下一篇:VMD去噪方法对时间序列进行去燥
相关资源
- 编程实现二维DCT变换
- 图像二值化
- 用FFT对信号进行频谱分析
- Tone-Reservation
- QGA 量子遗传算法
- EMD(经验模式分解)
- 差分形式的阻滞增长模型
- 遗传算法的M文件
- 简单二阶互联系统的非线性动力学分
- 基于改进EMD算法的跳频信号参数估计
- emd分解端点效应论文及改进程序
- bemd处理图像进行图像分解操作.zip
- 手写数字识别-模板匹配法
- Stock_Watson_动态因子分析模型
- 果蝇优化算法优化支持向量回归程序
- 自己做的一个简单GUI扑克纸牌识别-
- multi output SVR
- AR过程的线性建模过程与各种功率谱估
- PCNN TOOLBOX
- plstoolbox.zip
- 中国国家基础地理信息系统GIS数据
- 粒子群微电网优化调度
- 矩阵分析-经典教材-中文版-Roger.A.Ho
- 压缩感知TwIST
- 基于最小错误率的贝叶斯手写数字分
- 最全系统辨识源代码,包括多种最小
- PROE外挂SMY_EMD
- 导弹制导实验
- 画跟踪精确度图的程序.zip
- EEMD的快速实现FEEMD
评论
共有 条评论