资源简介

信道估计的MSE性能比较,阐述了几种经典算法仿真性能的对比

资源截图

代码片段和文件信息

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   Author:      Vinay Uday Prabhu
%   E-mail:      vinay_u_prabhu@yahoo.co.uk
%   Function:    Comparison of the performances of the LS and the MMSE channel estimators
%                for a 64 sub carrier OFDM system based on the parameter of Mean square error
%  Assumptions: The channel is assumed to be g(t)=delta(t-0.5 Ts)+delta(t-3.5 Ts)
%               {Fractionally spaced}
%For more information on the theory and formulae used  please do refer to the paper On
%“Channel Estimation In OFDM systems“ By Jan-Jaap van de Beek Ove Edfors Magnus Sandell
% Sarah Kate wilson and Petr Ola Borjesson In proceedings Of VTC‘95 Vol 2 pg.815-819
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc;
clear all;
%Generation of a naive training sequence..
%Assuming BPSK modulation ...symbols:+1/-1
X=zeros(6464);
d=rand(641);
      for i=1:64
       if(d(i)>=0.5)
           d(i)=+1;
       else
           d(i)=-1;
       end
    end
 for i=1:64
     X(ii)=d(i);
 end
%Calculation of G[The channel Matrix]
 %The channnel is... 
 %tau=[0 0.2 0.4 0.6 15 17.2]; %HT 
 tau=[0 0.2 0.6 1.6 2.4 5.0]; %TU The fractionally spaced taps..
 %tau=[0.5 3.5];%two-ray
 %for q=1:2
  %   a(q)=3;
 %end
 for q=1:6
   a(q)=sqrt(exp(-tau(q)));%TU
 end
 %for q=1:4
 %    a(q)=sqrt(exp(-3.5*tau(q)));%HT
 %end
 %for q=5:6
 %   a(q)=sqrt(0.1*exp(15-tau(q)));%HT
 %end
  %Generation of the G matrix...
for k=1:64
      s=0;
      for m=1:6%TUHT
      %for m=1:2%2-ray
      s=s+a(m)*(exp(-j*pi*(1/64)*(k+63*tau(m)) * ( sin(pi*tau(m)) / sin(pi*(1/64)*(tau(m)-k)))));
      %Go through the above cited paper for the theory behind the formula
      end
g(k)=s/sqrt(64);
end
g(5)=g(4);%TU
%g(15)=g(14);%HT
G=g‘;%Thus the channel vector is evaluated..
H=fft(G);% In the freq domain..
u=rand(6464);
F=fft(u)*inv(u);% ‘F‘ is the twiddle factor matrix..

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Evaluation of the autocovariance matrix of G-Rgg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
gg=zeros(6464);
for i=1:64
    gg(ii)=G(i);
end
gg_myu = sum(gg 1)/64;                    
gg_mid = gg - gg_myu(ones(641):);        
sum_gg_mid= sum(gg_mid 1);
Rgg = (gg_mid‘ * gg_mid- (sum_gg_mid‘  * sum_gg_mid) / 64) / (64 - 1);
hh=zeros(6464);
for i=1:64
    hh(ii)=H(i);
end
hh_myu = sum(hh 1)/64;                    
hh_mid = hh - hh_myu(ones(641):);        
sum_hh_mid= sum(hh_mid 1);
Rhh = (hh_mid‘ * hh_mid- (sum_hh_mid‘  * sum_hh_mid) / 64) / (64 - 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 属性            大小     日期    时间   名称
----------- ---------  ---------- -----  ----

    .CA....      4988  2009-08-26 10:19  MSE_compare.m

----------- ---------  ---------- -----  ----

                 4988                    1


评论

共有 条评论