资源简介
有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测
![](http://www.nz998.com/pic/56348.jpg)
代码片段和文件信息
%% 第25章 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测
%
% 该案例作者申明: 1:本人长期驻扎在此板块里,对该案例提问,做到有问必答。 2:此案例有配套的教学视频,视频下载请点击http://www.matlabsky.com/forum-91-1.html。 3:此案例为原创案例,转载请注明出处(《MATLAB智能算法30个案例分析》)。 4:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。 5:以下内容为初稿,与实际发行的书籍内容略有出入,请以书籍中的内容为准。
%
%% 清空环境变量
clear all
clc
%% 训练集/测试集产生
load spectra_data.mat
% 随机产生训练集和测试集
temp = randperm(size(NIR1));
% 训练集——50个样本
P_train = NIR(temp(1:50):)‘;
T_train = octane(temp(1:50):)‘;
% 测试集——10个样本
P_test = NIR(temp(51:end):)‘;
T_test = octane(temp(51:end):)‘;
N = size(P_test2);
%% BP神经网络创建、训练及仿真测试(R2009a)
% 创建网络
net = newff(P_trainT_train9);
% 设置训练参数
net.trainParam.epochs = 1000;
net.trainParam.goal = 1e-3;
net.trainParam.lr = 0.01;
% 训练网络
net = train(netP_trainT_train);
% 仿真测试
T_sim_bp = sim(netP_test);
%% RBF神经网络创建及仿真测试
% 创建网络
net = newrbe(P_trainT_train0.3);
% 仿真测试
T_sim_rbf = sim(netP_test);
%% 性能评价
% 相对误差error
error_bp = abs(T_sim_bp - T_test)./T_test;
error_rbf = abs(T_sim_rbf - T_test)./T_test;
% 决定系数R^2
R2_bp = (N * sum(T_sim_bp .* T_test) - sum(T_sim_bp) * sum(T_test))^2 / ((N * sum((T_sim_bp).^2) - (sum(T_sim_bp))^2) * (N * sum((T_test).^2) - (sum(T_test))^2));
R2_rbf = (N * sum(T_sim_rbf .* T_test) - sum(T_sim_rbf) * sum(T_test))^2 / ((N * sum((T_sim_rbf).^2) - (sum(T_sim_rbf))^2) * (N * sum((T_test).^2) - (sum(T_test))^2));
% 结果对比
result_bp = [T_test‘ T_sim_bp‘ T_sim_rbf‘ error_bp‘ error_rbf‘]
%% 绘图
figure
plot(1:NT_test‘b:*‘1:NT_sim_bp‘r-o‘1:NT_sim_rbf‘k-.^‘)
legend(‘真实值‘‘BP预测值‘‘RBF预测值‘)
xlabel(‘预测样本‘)
ylabel(‘辛烷值‘)
string = {‘测试集辛烷值含量预测结果对比(BP vs RBF)‘;[‘R^2=‘ num2str(R2_bp) ‘(BP)‘ ‘ R^2=‘ num2str(R2_rbf) ‘(RBF)‘]};
title(string)
%%
%
% 相关论坛:
Matlab技术论坛:www.matlabsky.com
Matlab函数百科:www.mfun.la
%
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 3139 2015-06-18 15:44 chapter25\main_2009a.m
文件 3128 2015-06-18 15:45 chapter25\main_2014a.m
文件 171497 2010-10-14 20:24 chapter25\spectra_data.mat
目录 0 2018-01-02 21:38 chapter25\
- 上一篇:ANSYS高速旋转轮盘模态分析全面讲解
- 下一篇:数值分析知识点
相关资源
- 连续hopfield神经网络解决TSP问题
- 改进的BP神经网络算法
- 基于bp神经网络的表情识别
- 神经网络仿真工具源代码
- 使用卷积神经网络在e + e-对撞机上改
- 用labview编写的一个神经网络Vi图
- 基于改进的SOM神经网络在产品配置中
- 深度学习卷积神经网络可检测和分类
- 标量场理论的回归和生成神经网络
- 基于ARIMA、BP神经网络与GM的组合模型
- 车辆自适应神经网络编队控制
- 基于RBF神经网络在线辨识的永磁同步
- 基于BP人工神经网络的SmFeN永磁材料工
- 融合粗糙集和人工神经网络的产品敏
- 基于粗糙集神经网络的数据挖掘在门
- Google OCR API源代码和神经网络识别OC
- 信息融合、神经网络-模糊推理理论及
- 基于双隐含层BP神经网络的预测
- SOM神经网络 PPT
- 小波神经网络预测模型代码
- 基于PSO优化BP神经网络的水质预测研究
- 基于神经网络的时间序列预测方法
- BP神经网络算法逼近一个正弦函数
- Hopfield神经网络解决 TSP问题
- 基于神经网络的数字水印
- 基于概率神经网络的图匹配算法研究
- 基于神经网络的身份证号码识别算法
- 机器学习方法R实现-用决策树、神经网
- 基于神经网络及Logistic回归的混合信用
- 台湾大学李宏毅——超详细GAN对抗神
评论
共有 条评论