资源简介
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers.
The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
代码片段和文件信息
- 上一篇:受压短柱徐变ansys分析方法
- 下一篇:Axure8.1.0.3372版本
相关资源
- resNet讲解.pdf
- 利用50层ResNet实现手势数字的识别
- Keras实现经典的卷积神经网络
- cyclegan预训练模型
- Tiny-yolo预训练模型darknet.conv.weights
- ESRGAN需要用到的预训练模型
- pytorch resnet 152 模型参数数据
- tensorflow-densenet-resnet-inception网络
- deepsort的权重 文件 ckpt.t7
- 现流行的AlexNetVGGNetGoogleNetSENetResNet等
- 用于SiamRPN的预训练模型AlexNet.pth
- ResNet-50-model.caffemodel
- 神经网络—yolov3Tiny的cfg和权重文件
- pytorch pretrain Resnet resnet18-5c106cde.pt
- tensorflow-resnet-inception网络
- ResNet-101-model.caffemodel
- HigherHRNet预训练模型
- resnet50_weights_tf_dim_ordering_tf_kernels_no
- resnet34-333f7ec4.pth
- inception_resnet_v2_2016_08_30预训练模型
- resnet18-5c106cde.pth和resnet101-5d3b4d8f.pth
- YOLOV3 预训练模型 darknet53.conv.74.zip
- VGG16 model for Keras
- Gaussian_yolov3_BDD.weights权重文件
- resnet_v1_101
- U2Net 网络预训练模型u2net.pth
- MobileNet V1官方预训练模型的使用
- 神经网络—yolov3的cfg和权重文件
- places205CNN_deploy30万次预训练模型caff
- resnet50_coco_best_v2.0.1.h5
评论
共有 条评论