-
大小:文件类型: .zip金币: 1下载: 0 次发布日期: 2022-01-25
- 语言: 其他
- 标签: scikit-leran tensorflow
资源简介
Hands-On Machine Learning with Scikit-Learn and TensorFlow中文版和英文版,还有代码
代码片段和文件信息
“““
This module merges two files from Scikit-Learn 0.20 to make a few encoders
available for users using an earlier version:
* sklearn/preprocessing/data.py (OneHotEncoder and CategoricalEncoder)
* sklearn/compose/_column_transformer.py (ColumnTransformer)
I just copy/pasted the contents fixed the imports and __all__ and also
copied the definitions of three pipeline functions whose signature changes
in 0.20: _fit_one_transformer _transform_one and _fit_transform_one.
The original authors are listed below.
----
The :mod:‘sklearn.compose._column_transformer‘ module implements utilities
to work with heterogeneous data and to apply different transformers to
different columns.
“““
# Authors: Andreas Mueller
# Joris Van den Bossche
# License: BSD 3 clause
from __future__ import division
import numbers
import warnings
import numpy as np
from scipy import sparse
from sklearn.base import clone baseEstimator TransformerMixin
from sklearn.externals import six
from sklearn.utils import Bunch check_array
from sklearn.externals.joblib.parallel import delayed Parallel
from sklearn.utils.metaestimators import _baseComposition
from sklearn.utils.validation import check_is_fitted FLOAT_DTYPES
from sklearn.pipeline import _name_estimators
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing.label import LabelEncoder
from itertools import chain
# weight and fit_params are not used but it allows _fit_one_transformer
# _transform_one and _fit_transform_one to have the same signature to
# factorize the code in ColumnTransformer
def _fit_one_transformer(transformer X y weight=None **fit_params):
return transformer.fit(X y)
def _transform_one(transformer X y weight **fit_params):
res = transformer.transform(X)
# if we have a weight for this transformer multiply output
if weight is None:
return res
return res * weight
def _fit_transform_one(transformer X y weight **fit_params):
if hasattr(transformer ‘fit_transform‘):
res = transformer.fit_transform(X y **fit_params)
else:
res = transformer.fit(X y **fit_params).transform(X)
# if we have a weight for this transformer multiply output
if weight is None:
return res transformer
return res * weight transformer
BOUNDS_THRESHOLD = 1e-7
zip = six.moves.zip
map = six.moves.map
range = six.moves.range
__all__ = [
‘OneHotEncoder‘
‘OrdinalEncoder‘
‘ColumnTransformer‘
‘make_column_transformer‘
]
def _argmax(arr_or_spmatrix axis=None):
return arr_or_spmatrix.argmax(axis=axis)
def _handle_zeros_in_scale(scale copy=True):
‘‘‘ Makes sure that whenever scale is zero we handle it correctly.
This happens in most scalers when we have constant features.‘‘‘
# if we are fitting on 1D arrays scale might be a scalar
if np.isscalar(scale):
if scale == .0:
scale
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-09-01 15:00 Hands-On Machine Learning with Scikit-Learn and TensorFlow\
文件 47507402 2018-08-15 16:35 Hands-On Machine Learning with Scikit-Learn and TensorFlow\Hands-On Machine Learning with Scikit-Learn and TensorFlow.pdf
文件 15111719 2018-06-29 09:27 Hands-On Machine Learning with Scikit-Learn and TensorFlow\Hands-On Machine Learning with Scikit-Learn and TensorFlow中文版.pdf
目录 0 2018-09-01 14:51 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\
文件 195 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\.gitignore
目录 0 2018-09-01 14:51 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\.ipynb_checkpoints\
文件 1399309 2018-08-16 14:33 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\.ipynb_checkpoints\16_reinforcement_learning-checkpoint.ipynb
文件 284756 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\01_the_machine_learning_landscape.ipynb
文件 1350273 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\02_end_to_end_machine_learning_project.ipynb
文件 447511 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\03_classification.ipynb
文件 851389 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\04_training_linear_models.ipynb
文件 914359 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\05_support_vector_machines.ipynb
文件 204214 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\06_decision_trees.ipynb
文件 553305 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\07_ensemble_learning_and_random_forests.ipynb
文件 5760930 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\08_dimensionality_reduction.ipynb
文件 203686 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\09_up_and_running_with_tensorflow.ipynb
文件 320538 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\10_introduction_to_artificial_neural_networks.ipynb
文件 1954530 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\11_deep_learning.ipynb
文件 24726 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\12_distributed_tensorflow.ipynb
文件 4981104 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\13_convolutional_neural_networks.ipynb
文件 674734 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\14_recurrent_neural_networks.ipynb
文件 349978 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\15_autoencoders.ipynb
文件 1399309 2018-08-16 14:33 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\16_reinforcement_learning.ipynb
文件 48616 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\book_equations.ipynb
目录 0 2018-09-01 14:51 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\
目录 0 2018-09-01 14:51 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\housing\
文件 1423529 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\housing\housing.csv
文件 409488 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\housing\housing.tgz
文件 3680 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\housing\README.md
目录 0 2018-09-01 14:51 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\inception\
文件 31674 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\inception\imagenet_class_names.txt
............此处省略69个文件信息
相关资源
- Hands-On Machine Learning with Scikit-Learn &
- 《机器学习实战:基于Scikit-Learn和T
- OpenCV4.0 cmake后生成的库文件,包含c
- Hands-On Machine Learning with Scikit-Learn an
- Tensorflow文字定位、tesseract识别
- TensorFlow transfer learning权值文件、数据
- TensorFlow白皮书官方文档
- 基于Tensorflow下的cnn卷积神经网络实现
- TensorFlow1.2版本CIFAR10代码
- cifar10demo.zip
- 14亿邮箱泄露密码明文信息TensorFlow数
- 在mnist数据集上训练神经网络(非CN
- tensorflow 量化demo
- 遥感影像场景识别tensorflow-CNN
- 完整用CNN(Tensorflow)完成文本分类的
- 《tensorflow实战》的源代码
- 在github上面的一些关于深度学习的项
- 鸢尾花 softmax tensorflow
- Tensorflow程序
- (WGAN、WGAN_gp)Wasseratein GAN
- CGANConditional Generative Adversarial Nets
- tensorflow识别花朵
- keras tensorflow lstm 多变量序列的预测
- 基于TensorFlow的Faster_R-CNN源码
- 在TensorFlow框架下实现DBN网络源码
- Tensorflow垃圾邮件分类
- TensorFlow视频教程
- tensorflow实现猫狗识别
- 双线性池化Bilinear poolingtensorflow版
- tensorflow 1.3 lstm训练和预测铁路客运数
评论
共有 条评论