资源简介
Scikit-Learn与TensorFlow机器学习实用指南,中英两本电子书,含代码
代码片段和文件信息
“““
This module merges two files from Scikit-Learn 0.20 to make a few encoders
available for users using an earlier version:
* sklearn/preprocessing/data.py (OneHotEncoder and CategoricalEncoder)
* sklearn/compose/_column_transformer.py (ColumnTransformer)
I just copy/pasted the contents fixed the imports and __all__ and also
copied the definitions of three pipeline functions whose signature changes
in 0.20: _fit_one_transformer _transform_one and _fit_transform_one.
The original authors are listed below.
----
The :mod:‘sklearn.compose._column_transformer‘ module implements utilities
to work with heterogeneous data and to apply different transformers to
different columns.
“““
# Authors: Andreas Mueller
# Joris Van den Bossche
# License: BSD 3 clause
from __future__ import division
import numbers
import warnings
import numpy as np
from scipy import sparse
from sklearn.base import clone baseEstimator TransformerMixin
from sklearn.externals import six
from sklearn.utils import Bunch check_array
from sklearn.externals.joblib.parallel import delayed Parallel
from sklearn.utils.metaestimators import _baseComposition
from sklearn.utils.validation import check_is_fitted FLOAT_DTYPES
from sklearn.pipeline import _name_estimators
from sklearn.preprocessing import FunctionTransformer
from sklearn.preprocessing.label import LabelEncoder
from itertools import chain
# weight and fit_params are not used but it allows _fit_one_transformer
# _transform_one and _fit_transform_one to have the same signature to
# factorize the code in ColumnTransformer
def _fit_one_transformer(transformer X y weight=None **fit_params):
return transformer.fit(X y)
def _transform_one(transformer X y weight **fit_params):
res = transformer.transform(X)
# if we have a weight for this transformer multiply output
if weight is None:
return res
return res * weight
def _fit_transform_one(transformer X y weight **fit_params):
if hasattr(transformer ‘fit_transform‘):
res = transformer.fit_transform(X y **fit_params)
else:
res = transformer.fit(X y **fit_params).transform(X)
# if we have a weight for this transformer multiply output
if weight is None:
return res transformer
return res * weight transformer
BOUNDS_THRESHOLD = 1e-7
zip = six.moves.zip
map = six.moves.map
range = six.moves.range
__all__ = [
‘OneHotEncoder‘
‘OrdinalEncoder‘
‘ColumnTransformer‘
‘make_column_transformer‘
]
def _argmax(arr_or_spmatrix axis=None):
return arr_or_spmatrix.argmax(axis=axis)
def _handle_zeros_in_scale(scale copy=True):
‘‘‘ Makes sure that whenever scale is zero we handle it correctly.
This happens in most scalers when we have constant features.‘‘‘
# if we are fitting on 1D arrays scale might be a scalar
if np.isscalar(scale):
if scale == .0:
scale
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 47507402 2018-08-15 16:35 Hands-On Machine Learning with Scikit-Learn and TensorFlow\Hands-On Machine Learning with Scikit-Learn and TensorFlow.pdf
文件 15111719 2018-06-29 09:27 Hands-On Machine Learning with Scikit-Learn and TensorFlow\hands-on-ml-with-sklearn-and-tf 中文.pdf
....... 195 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\.gitignore
文件 1399309 2018-08-16 14:33 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\.ipynb_checkpoints\16_reinforcement_learning-checkpoint.ipynb
....... 284756 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\01_the_machine_learning_landscape.ipynb
....... 1350273 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\02_end_to_end_machine_learning_project.ipynb
....... 447511 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\03_classification.ipynb
....... 851389 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\04_training_linear_models.ipynb
....... 914359 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\05_support_vector_machines.ipynb
....... 204214 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\06_decision_trees.ipynb
....... 553305 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\07_ensemble_learning_and_random_forests.ipynb
....... 5760930 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\08_dimensionality_reduction.ipynb
....... 203686 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\09_up_and_running_with_tensorflow.ipynb
....... 320538 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\10_introduction_to_artificial_neural_networks.ipynb
....... 1954530 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\11_deep_learning.ipynb
....... 24726 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\12_distributed_tensorflow.ipynb
....... 4981104 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\13_convolutional_neural_networks.ipynb
....... 674734 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\14_recurrent_neural_networks.ipynb
....... 349978 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\15_autoencoders.ipynb
文件 1399309 2018-08-16 14:33 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\16_reinforcement_learning.ipynb
....... 48616 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\book_equations.ipynb
....... 1423529 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\housing\housing.csv
....... 409488 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\housing\housing.tgz
....... 3680 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\housing\README.md
....... 31674 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\inception\imagenet_class_names.txt
....... 36323 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\lifesat\gdp_per_capita.csv
....... 405467 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\lifesat\oecd_bli_2015.csv
....... 4311 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\datasets\lifesat\README.md
....... 32 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\docker\.env
....... 89 2018-08-11 04:21 Hands-On Machine Learning with Scikit-Learn and TensorFlow\handson-ml-master\docker\bashrc.bash
............此处省略73个文件信息
相关资源
- hownet最新版资源
- 中科大-机器学习-课程ppt-课后习题答
- minst数据集机器学习练习
- 人工神经网络与机器学习 第三版 课后
- 百面机器学习:算法工程师带你去
- 百面机器学习.pdf
- 数据挖掘 实用机器学习工具与技术
- 车牌识别训练图库最全合集
- 人工智能书籍合集
- 吴恩达斯坦福机器学习课件pptx(完整
- 机器学习之路——Caffe、Keras、scikit
- 国科大机器学习课程课件
- 《深度学习技术图像处理入门》_杨培
- Hands-On Machine Learning with Scikit-Learn &
- 第一本无人驾驶技术书.刘少山(高清
- 《机器学习实战:基于Scikit-Learn和T
- 神经网络与机器学习+科学计算中的蒙
- 基于UCI中Car Evaluation数据集的分类、回
- 机器学习4-多元线性回归:数据集与
- 中国科学技术大学-机器学习与知识发
- 中国科学院大学国科大机器学习与应
- 国科大模式识别与机器学习2016-2017试
- MSET算法原理
- 机器学习技术在现代农业气象中的应
- 山东大学软工机器学习限选课概念总
- 机器学习——疫情分析.zip
- 国科大 模式识别与机器学习 2018-201
- 国科大-2017-2018模式识别与机器学习期
- Hadoop + Spark 大数据巨量分析与机器学
- 决策树来实现泰坦尼克生存情况
评论
共有 条评论