资源简介
HP93K RF 模块详细教程
Lesson 1: RF Hardware
Lesson 2: Review Port Setups & Multi-site
Lesson 3: Review Port Scale RF Specifications
Lesson 4: RF Software
Lesson 5: CW Loopback Labs
Lesson 6: Set Up Sequencing
Lesson 7: Control RF Triggering
Lesson 8: Review Sampling Parameters
Lesson 9: Measure Intermodulation Distortion (RF to RF)
Lesson 10: Measure Intermodulation Distortion (RF to RF)
Lesson 11: Calibrate RF Subsystem
Lesson 12: Multi-TestFlow Calibration Lab
Lesson 13: Modulated Stimulus and Measurement
Lesson 14: ACLR & EVM Lab
Lesson 15: Use RF APIs.
Lesson 16: Port Scale Feature Demo
Lesson 17: Measure Carrier Suppression (BB to RF)
Lesson 18: Measure IQ Phase/Amplitude Imbalance (RF to Baseband)
Quiz Review Port Setups & Multi-site
代码片段和文件信息
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
文件 3555157 2010-02-26 08:18 PortScaleCourseGuide.pdf
文件 20169533 2010-02-26 08:18 Port_scale_RF_Taining_slide_sets.zip
文件 245760 2010-02-26 08:18 README_Portscale_training.doc
----------- --------- ---------- ----- ----
文件 3555157 2010-02-26 08:18 PortScaleCourseGuide.pdf
文件 20169533 2010-02-26 08:18 Port_scale_RF_Taining_slide_sets.zip
文件 245760 2010-02-26 08:18 README_Portscale_training.doc
相关资源
- nRF51822开发工具包 SDK包 协议栈 全
- surfacer11中文版
- Tensorflow手写字体识别入门
- iOS and macOS Performance Tuning(pdf + epub)
- Comprehensive_Experiment.zip
- LSTM的PTB数据集
- OPENCV实现ORB/SURF/SIFT + RANSAC 图像自动拼
- 实用射频测试和测量-带目录.pdf
- USB转NRF24L01 UI上位机
- Sklearn与TensorFlow 机器学习实用指南翻
- Hyperledger Fabric区块链医疗系统毕业设
- 《深度学习之TensorFlow:入门、原理与
- tensorflow-resnet-inception网络
- NRF52832_SDK_15.0.0
- SpringMVC+Redis+Activiti+Fastdfs+Thirft+Websoc
- 界面设计模式 Designing Interfaces 中文版
- 强化学习精要 核心算法与TensorFlow实现
- Computer Organization and Design RISC-V Editio
- 《Tensorflow:实战Google深度学习框架》
- 基于深度学习的图像去雨
- tensorflow深度学习三部曲.rar
- RC522 RFID射频模块
- 21个项目玩转tensorflow.zip
- 衣服种类图片分类pb模型和名字txt
- cifar10经典数据集
- 人脸识别的TensorFlow源代码
- master_slave_ble_demo_sdk15.3.zip
- linearandnonlinearfunctionalanalysiswithapplic
- 《21个项目玩转深度学习:基于Tenso
- 机器学习实战:基于Scikit-Learn和Tens
评论
共有 条评论