资源简介
《神经网络与深度学习》源代码
代码片段和文件信息
“““
backprop_magnitude_nabla
~~~~~~~~~~~~~~~~~~~~~~~~
Using backprop2 I constructed a 784-30-30-30-30-30-10 network to classify
MNIST data. I ran ten mini-batches of size 100 with eta = 0.01 and
lambda = 0.05 using:
net.SGD(otd[:1000] 1 100 0.01 0.05
I obtained the following norms for the (unregularized) nabla_w for the
respective mini-batches:
[0.90845722175923671 2.8852730656073566 10.696793986223632 37.75701921183488 157.7365422527995 304.43990075227839]
[0.22493835119537842 0.6555126517964851 2.6036801277234076 11.408825365731225 46.882319190445472 70.499637502698221]
[0.11935180022357521 0.19756069137133489 0.8152794148335869 3.4590802543293977 15.470507965493903 31.032396017142556]
[0.15130005837653659 0.39687135985664701 1.4810006139254532 4.392519005642268 16.831939776937311 34.082104455938733]
[0.11594085276308999 0.17177668061395848 0.72204558746599512 3.05062409378366 14.133001132214286 29.776204839994385]
[0.10790389807606221 0.20707152756018626 0.96348134037828603 3.9043824079499561 15.986873430586924 39.195258080490895]
[0.088613291101645356 0.129173436407863 0.4242933114455002 1.6154682713449411 7.5451567587160069 20.180545544006566]
[0.086175380639289575 0.12571016850457151 0.44231149185805047 1.8435833504677326 7.61973813981073 19.474539356281781]
[0.095372080184163904 0.15854489503205446 0.70244235144444678 2.6294803575724157 10.427062019753425 24.309420272033819]
[0.096453131000155692 0.13574642196947601 0.53551377709415471 2.0247466793066895 9.4503978546018068 21.73772148470092]
Note that results are listed in order of layer. They clearly show how
the magnitude of nabla_w decreases as we go back through layers.
In this program I take min-batches 7 8 9 as representative and plot
them. I omit the results from the first and final layers since they
correspond to 784 input neurons and 10 output neurons not 30 as in
the other layers making it difficult to compare results.
Note that I haven‘t attempted to preserve the whole workflow here. It
involved some minor hacking around with backprop2 which messed up
that code. That‘s why I‘ve simply put the results in by hand below.
“““
# Third-party libraries
import matplotlib.pyplot as plt
nw1 = [0.129173436407863 0.4242933114455002
1.6154682713449411 7.5451567587160069]
nw2 = [0.12571016850457151 0.44231149185805047
1.8435833504677326 7.61973813981073]
nw3 = [0.15854489503205446 0.70244235144444678
2.6294803575724157 10.427062019753425]
plt.plot(range(1 5) nw1 “ro-“ range(1 5) nw2 “go-“
range(1 5) nw3 “bo-“)
plt.xlabel(‘layer $l$‘)
plt.ylabel(r“$\Vert\nabla C^l_w\Vert$“)
plt.xticks([1 2 3 4])
plt.show()
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2016-11-12 04:49 neural-networks-and-deep-learning-master\
文件 52 2016-11-12 04:49 neural-networks-and-deep-learning-master\.gitignore
文件 1936 2016-11-12 04:49 neural-networks-and-deep-learning-master\README.md
目录 0 2016-11-12 04:49 neural-networks-and-deep-learning-master\data\
文件 17051982 2016-11-12 04:49 neural-networks-and-deep-learning-master\data\mnist.pkl.gz
目录 0 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\
文件 29523 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\backprop_magnitude_nabla.png
文件 2790 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\backprop_magnitude_nabla.py
文件 5375943 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\data_1000.json
文件 8414 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\digits.png
文件 8218 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\digits_separate.png
文件 150522 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\false_minima.png
文件 1066 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\false_minima.py
文件 3848 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\generate_gradient.py
文件 272 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\initial_gradient.json
文件 190268 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\misleading_gradient.png
文件 1207 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\misleading_gradient.py
文件 59286 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\misleading_gradient_contours.png
文件 514 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\misleading_gradient_contours.py
文件 12449 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist.py
文件 58028 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist_100_digits.png
文件 5499 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist_2_and_1.png
文件 4934 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist_complete_zero.png
文件 4904 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist_first_digit.png
文件 4715 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist_other_features.png
文件 11964 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist_really_bad_images.png
文件 3940 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\mnist_top_left_feature.png
文件 63 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\more_data.json
文件 33106 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\more_data.png
文件 3821 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\more_data.py
文件 4832 2016-11-12 04:49 neural-networks-and-deep-learning-master\fig\more_data_5.png
............此处省略77个文件信息
- 上一篇:数字信号处理教程 第二版 完整版
- 下一篇:FastReport6
相关资源
- 深度学习基础网络模型(mnist手写体识
- 吴恩达UFLDL教程
- 神经网络原理 Simon.Haykin 编着——神经
- 深度学习:智能时代的核心驱动力量
- Deep Learning with R
- 神经网络设计美哈根
- 深度学习基础(Fundamentals of Deep Lear
- 卷积神经网络车牌识别164048
- BP神经网络的车牌字符识别的研究
- 使用tensorflow实现CNN-RNN-GAN代码
- 金融股票深度学习论文整理
- 对《Secureml A system for scalable privacy-p
- Hands-On Machine Learning with Scikit-Learn Ke
- 深度学习方法及应用Deep Learning Metho
- 深度学习源代码162566
- 概率统计超入门
- 黄海广博士整理的吴恩达深度学习笔
- Neural Networks and Deep Learning-神经网络与
- opencv 神经网络训练用英文字库.zip
- 深度学习资料+官方文档
- 卷积神经网络车牌识别
- 动手学深度学习源代码
- 深度学习框架PyTorch:入门与实践 PD
- 现流行的AlexNetVGGNetGoogleNetSENetResNet等
- Reinforcement Learning an Introduction,2018正
- 深度学习卷积神经网络代码
- 深度学习/图像识别/TensorFlow
- fashion-mnist数据集
- 深度学习 [deep learning] AI圣经 Deep Lea
- 一天弄懂深度学习-李宏毅PPT+PDF超级高
评论
共有 条评论