资源简介
SIFT等局部特征的词袋模型实现。包括K-means聚类,直方图特征的形成,以及KNN分类。
代码片段和文件信息
#include “Feature.h“
Feature::Feature()
: datas(0)
{
}
Feature::Feature(int dim int category int Id)
: datas(dim0)
{
this->category = category;
this->Id = Id;
}
Feature::Feature(const Feature& feature)
: datas(feature.datas)
{
this->category = feature.category;
this->Id = feature.Id;
}
double Feature::getValueAt(int index)
{
return this->datas[index];
}
void Feature::updateValue(int pos double value)
{
this->datas[pos]= value;
}
void Feature::addValue(double value)
{
this->datas.push_back(value);
}
int Feature::getCategory()
{
return this->category;
}
int Feature::getId()
{
return this->Id;
}
int Feature::getDim()
{
return this->datas.size();
}
double Feature::calculateDistance(const Feature& feature int DistanceType)
{
if (datas.size() != feature.datas.size())
{
return 10000;
}
double distance = 0;
int featureDim = datas.size();
for (int i = 0; i < featureDim; i++)
{
distance += pow(fabs(datas[i] - feature.datas[i]) DistanceType);
}
distance = pow(distance 1. / DistanceType);
return distance;
}
istream& operator>>(istream& is Feature& feature)
{
int featureDim = feature.datas.size();
for (int i = 0; i < featureDim; i++)
{
is >> feature.datas[i];
}
if (featureDim != 0)
{
is >> feature.category;
}
return is;
}
Feature& Feature::operator=(const Feature& feature)
{
this->datas = feature.datas;
this->category = feature.category;
return *this;
}
Feature& Feature::operator+=(const Feature& feature)
{
int featureDim = this->datas.size();
if (featureDim != feature.datas.size())//特征值不同,不进行加法
{
return *this;
}
for (int i = 0; i < featureDim; i++)
{
this->datas[i] += feature.datas[i];
}
this->category = -1;//结果的特征类别不确定
return *this;
}
Feature& Feature::operator-=(const Feature& feature)
{
int featureDim = this->datas.size();
if (featureDim != feature.datas.size())//若特征维数不同,不能进行减法
{
return *this;
}
for (int i = 0; i < featureDim; i++)
{
this->datas[i] -= feature.datas[i];
}
this->category = -1;//结果的特征类别不确定
return *this;
}
Feature& Feature::operator*= (const Feature& feature)
{
int featureDim = this->datas.size();
if (featureDim != feature.datas.size())//若特征维数不同,不能进行乘法
{
return *this;
}
for (int i = 0; i < featureDim; i++)
{
this->datas[i] *= feature.datas[i];
}
this->category = -1;//结果的特征类别不确定
return *this;
}
Feature& Feature::operator/= (double scale)
{
if (scale == 0)
{
return *this;//倍数为0不进行除法
}
int featureDim = this->datas.size();
for (int i = 0; i < featureDim; i++)
{
this->datas[i] /= scale;
}
this->category = -1;//结果的特征类别不确定
return *this;
}
Feature Feature::operator+(const Feature& feature)
{
return Feature(*this) += feature;
}
Feature Feature::operator-(const Feature& feature)
{
return Feature(*this) -= feature;
}
Feature Feature::operator*(const Feature& feature)
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2014-05-19 10:24 Bag-of-visual-words\
目录 0 2014-05-19 10:24 Bag-of-visual-words\Bag-of-visual-words\
文件 4440 2013-12-04 10:27 Bag-of-visual-words\Bag-of-visual-words\Bag-of-visual-words.vcxproj
文件 1692 2013-12-04 10:27 Bag-of-visual-words\Bag-of-visual-words\Bag-of-visual-words.vcxproj.filters
文件 3211 2013-12-04 13:31 Bag-of-visual-words\Bag-of-visual-words\Feature.cpp
文件 1271 2013-12-04 13:31 Bag-of-visual-words\Bag-of-visual-words\Feature.h
文件 1503 2013-12-04 12:50 Bag-of-visual-words\Bag-of-visual-words\FeatureSet.cpp
文件 967 2013-12-04 13:22 Bag-of-visual-words\Bag-of-visual-words\FeatureSet.h
文件 2105 2013-12-04 13:30 Bag-of-visual-words\Bag-of-visual-words\KMeans.cpp
文件 384 2013-12-04 13:25 Bag-of-visual-words\Bag-of-visual-words\KMeans.h
文件 1416 2013-12-04 13:30 Bag-of-visual-words\Bag-of-visual-words\KNN.cpp
文件 278 2013-12-04 13:24 Bag-of-visual-words\Bag-of-visual-words\KNN.h
文件 4232 2013-12-04 13:34 Bag-of-visual-words\Bag-of-visual-words\main.cpp
目录 0 2013-12-02 16:33 Bag-of-visual-words\Bag-of-visual-words\局部特征\
文件 162 2013-12-02 16:02 Bag-of-visual-words\Bag-of-visual-words\局部特征\~$说明文档.docx
目录 0 2013-12-02 16:33 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\
文件 86594 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\0.txt
文件 100038 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\1.txt
文件 97678 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\10.txt
文件 98340 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\11.txt
文件 83300 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\12.txt
文件 73132 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\13.txt
文件 67523 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\14.txt
文件 99991 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\15.txt
文件 65251 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\16.txt
文件 65990 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\17.txt
文件 68322 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\18.txt
文件 107469 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\19.txt
文件 117125 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\2.txt
文件 59707 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\20.txt
文件 70635 2013-11-12 08:57 Bag-of-visual-words\Bag-of-visual-words\局部特征\恐龙(feature)\21.txt
............此处省略379个文件信息
- 上一篇:GMT安装及说明
- 下一篇:opencv4.1_x86.rar
相关资源
- BoW(Bag of Words)词袋模型.zip
- roboware安装包.tar.gz
- roboware-studio_1.2.0-20190625_amd64.rar
- 基于 K-means 聚类算法的图像区域分割
- 数据集bank.arff
- 各种聚类程序,包括生成聚类树、k
- k-means数据
- 基于特征选择的K-means聚类异常检测方
- K-means聚类数据.rar
- k-means优化算法
- 中文文本预处理;k-means聚类
- kemans聚类用的数据--包含多个数据
- 机器学习-K-MEANS聚类
- 基于K-means聚类的图像分割
- k-means算法二维坐标数据
- MapReduce下的k-means算法实验报告广工
- Multi-View K-Means Clustering on Big Data
- data-science-bowl-2018.zip
- Charles Elkan的快速k-means算法的代码
- K-均值聚类实现路标检测
- ShuiBoWen.unitypackage
- K-medoids聚类源代码K-means改进
- 关于k-means的一篇好的总结论文
-
Efficient Graph-ba
sed Image Segmentation & - 多种K-means聚类算法或改进算法包,
- 煤岩图像边界的K-means识别算法
- k-means训练
- k-means算法用到的数据集
- 自适应布谷鸟搜索的并行K-means聚类算
- Caffe-ssd的宽高比聚类
评论
共有 条评论