资源简介
人脸识别源码,自己写的,可以规则匹配。
代码片段和文件信息
“““ Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
“““
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted free of charge to any person obtaining a copy
# of this software and associated documentation files (the “Software“) to deal
# in the Software without restriction including without limitation the rights
# to use copy modify merge publish distribute sublicense and/or sell
# copies of the Software and to permit persons to whom the Software is
# furnished to do so subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED “AS IS“ WITHOUT WARRANTY OF ANY KIND EXPRESS OR
# IMPLIED INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM DAMAGES OR OTHER
# LIABILITY WHETHER IN AN ACTION OF CONTRACT TORT OR OTHERWISE ARISING FROM
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import string_types iteritems
import numpy as np
import tensorflow as tf
#from math import floor
import cv2
import os
def layer(op):
“““Decorator for composable network layers.“““
def layer_decorated(self *args **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault(‘name‘ self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError(‘No input variables found for layer %s.‘ % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self layer_input *args **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self inputs trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true the resulting variables are set as trainable
self.trainable = trainable
self.setup()
def setup(self):
“““Construct the network. “““
raise NotImplementedError(‘Must be implemented by the subclass.‘)
def load(self data_path session i
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\
文件 1061 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\LICENSE
文件 1807 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\README.md
目录 0 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\__pycache__\
文件 22048 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\__pycache__\detect_face.cpython-36.pyc
文件 6618 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\__pycache__\face.cpython-36.pyc
文件 17952 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\__pycache__\facenet.cpython-36.pyc
文件 6274 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\__pycache__\fhog.cpython-36.pyc
文件 10383 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\__pycache__\kcftracker.cpython-36.pyc
文件 27368 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\det1.npy
文件 401681 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\det2.npy
文件 1557360 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\det3.npy
文件 31697 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\detect_face.py
文件 27357 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\detect_face.pyc
文件 8263 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\export_em
文件 8516 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\face.py
文件 7618 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\face.pyc
目录 0 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\face_lib\
文件 592 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\face_lib\li.npy
文件 592 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\face_lib\liu.npy
文件 592 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\face_lib\wang.npy
文件 22155 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\facenet.py
文件 21586 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\facenet.pyc
文件 12483 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\fhog.py
文件 7355 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\fhog.pyc
文件 11946 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\kcftracker.py
文件 12721 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\kcftracker.pyc
文件 592 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\li.npy
文件 592 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\liu.npy
文件 6164 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\predict.py
文件 3713 2018-02-25 08:36 facebroadcast-demo-f88e91f73c3308993313d75bc2631920d0d16187\run.py
............此处省略2个文件信息
- 上一篇:极小值原理
- 下一篇:MSR说话人识别工具箱
相关资源
- 深度学习 故障诊断PPT
- 东南大学 崇志宏:贝叶斯深度学习
- Deep Learning深度学习学习笔记整理系列
- deep learning 深度学习的现状及局限综述
- VGG16图像分类源代码、测试图片
- 基于深度学习的路网短时交通流预测
- 基于深度学习的手语识别综述
- 深度学习介绍ppt
- PCA人脸识别
- 基于深度学习的人脸识别研究
- 基于PCA特征脸的人脸识别
- 基于知识图谱的问答系统综述
- 人脸识别 20122213406983.rar
- 神经网络与深度学习中文版
- pca的人脸识别程序(包括orl人脸库)
- 中科院山世光老师开源的Seetaface人脸
- 人脸识别离线SDK配合博客使用
- SciPy_Tokyo_Hands-on TensorFlow 2.0.pdf
- 解决FCN build error MITSceneParsing.pickle
- 树莓派人脸识别USB摄像头
- Neural Networks and Deep Learning中文版
- 深度有趣-人工智能实战项目集合
- openCV图像检测资源包
- Opencv 下Cascade Classifier实现人脸识别的
- CNN原理和简单实现
- 基于HLS的Tiny_yolo卷积神经网络加速研
- 解析深度学习卷积神经网络原理与视
- 解析深度学习:卷积神经网络原理与
- Neural networks and deep learning pdf 英文版
- 《神经网络与深度学习-邱锡鹏》习题
评论
共有 条评论