资源简介
使用Opencv进行图像分类的应用程序,对图像的区分程度不错。

代码片段和文件信息
import cv2
import pandas as pd
import numpy as np
from numpy.linalg import norm
import glob
import pickle
# local modules
#RandomForestClassifier
def RandomForest_learn(xyX_testY_test):
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators=3 criterion=‘entropy‘ random_state=0)
classifier.fit(x y)
y_pred = classifier.predict(X_test)
pickle.dump(classifier open(‘RandomForestClassifier.sav‘ ‘wb‘))
n = 0
p = 0
i = 0
while i < len(y_pred):
if y_pred[i] == Y_test[i]:
p = p + 1
else:
n = n + 1
i = i + 1
print(n)
print(p)
accuracy = (p / len(y_pred)) * 100
print(accuracy ‘% RandomForestClassifier‘)
#DecisionTreeClassifier
def DecisionTree_learn(xyX_testY_test):
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion=‘entropy‘ random_state=0)
classifier.fit(x y)
y_pred = classifier.predict(X_test)
pickle.dump(classifier open(‘DecisionTreeClassifier.sav‘ ‘wb‘))
n = 0
p = 0
i = 0
while i < len(y_pred):
if y_pred[i] == Y_test[i]:
p = p + 1
else:
n = n + 1
i = i + 1
print(n)
print(p)
accuracy = (p / len(y_pred)) * 100
print(accuracy ‘% DecisionTreeClassifier‘)
#Kernel SVM classification
def KernelSVM_learn(xyX_testY_test):
# Fitting SVM to the Training set
from sklearn.svm import SVC
classifier = SVC(kernel=‘rbf‘ gamma=5.383 C=2.67)
classifier.fit(x y)
y_pred = classifier.predict(X_test)
pickle.dump(classifier open(‘KernelSVMClassifier.sav‘ ‘wb‘))
n = 0
p = 0
i = 0
while i < len(y_pred):
if y_pred[i] == Y_test[i]:
p = p + 1
else:
n = n + 1
i = i + 1
print(n)
print(p)
accuracy = (p / len(y_pred)) * 100
print(accuracy ‘% KernelSVM‘)
#Linear SVM classification
def LinearSVM_learn(xyX_testY_test):
# Fitting SVM to the Training set
from sklearn.svm import SVC
classifier = SVC(kernel=‘linear‘ random_state=0)
classifier.fit(x y)
y_pred = classifier.predict(X_test)
pickle.dump(classifier open(‘LinearSVMClassifier.sav‘ ‘wb‘))
n = 0
p = 0
i = 0
while i < len(y_pred):
if y_pred[i] == Y_test[i]:
p = p + 1
else:
n = n + 1
i = i + 1
print(n)
print(p)
accuracy = (p / len(y_pred)) * 100
print(accuracy ‘% linearSVM‘)
#logit classification
def Logit_learn(xyX_testY_test):
# Fitting Logit to the Training set
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(x y)
y_pred = classifier.predict(X_test)
pickle.dump(classifier open(‘LogisticClassifier.sav‘
属性 大小 日期 时间 名称
----------- --------- ---------- ----- ----
目录 0 2018-10-19 10:42 Take_photo_By_Finger-master\
文件 1203 2018-10-19 10:42 Take_photo_By_Finger-master\.gitignore
文件 3768 2018-10-19 10:42 Take_photo_By_Finger-master\DecisionTreeClassifier.sav
文件 658183 2018-10-19 10:42 Take_photo_By_Finger-master\KNeighborsClassifier.sav
文件 59353 2018-10-19 10:42 Take_photo_By_Finger-master\KernelSVMClassifier.sav
文件 35149 2018-10-19 10:42 Take_photo_By_Finger-master\LICENSE
文件 81703 2018-10-19 10:42 Take_photo_By_Finger-master\LinearSVMClassifier.sav
文件 1332 2018-10-19 10:42 Take_photo_By_Finger-master\LogisticClassifier.sav
文件 206 2018-10-19 10:42 Take_photo_By_Finger-master\README.md
文件 12326 2018-10-19 10:42 Take_photo_By_Finger-master\RandomForestClassifier.sav
目录 0 2018-10-19 10:42 Take_photo_By_Finger-master\gr\
文件 169 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.541338.png
文件 157 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.5563493.png
文件 186 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.5593388.png
文件 131729 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.5633383.png
文件 979 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.587339.png
文件 1174 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.590338.png
文件 643 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.605342.png
文件 10461 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.608341.png
文件 11567 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.6213424.png
文件 79 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.6253388.png
文件 2229 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937946.6283371.png
文件 314 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937948.9613378.png
文件 500 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937948.9953377.png
文件 978 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937949.278338.png
文件 962 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937949.4093368.png
文件 1020 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937949.4453394.png
文件 1335 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937949.47834.png
文件 1461 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937949.5053358.png
文件 67 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937949.5693386.png
文件 336 2018-10-19 10:42 Take_photo_By_Finger-master\gr\1539937949.57334.png
............此处省略264个文件信息
相关资源
- 基于OpenCV的数字识别468815
- 使用opencv去掉二值化图像中黑色面积
- opencv环境配置
- win10 64位下编译的opencv4.5.5库,opencv
- NVIDIAOpticalFlowSDK-79c6cee80a2df9a196f20afd6
- opencv_contrib-3.4.0.zip
- BoW|Pyramid BoW+SVM进行图像分类
- opencv2.4.9源码分析——SIFT
- 用两个摄像头实现,双目标定,双目
- opencv_traincascade训练分类器,手势识别
- opencv3.0交叉编译用parallel.cpp
- 基于opencv的图像识别识别图像中的色
- 基于openCV的识别特定颜色区域
- 基于OpenCV的分水岭算法实现
- QT+opencv+OCR 身份证号码,银行卡号识别
- opencv视频特定颜色区域识别
- 把RGB转换为HSV和HSI然后根据黄色和蓝
- opencv视觉测距
- 基于Qt和opencv的身份证号码识别系统
- opencv_ffmpeg249.dll
- SfM稀疏三维点云重建--完整工程文件
- 基于opencv的数人头程序源代码
- 水果识别代码
- 利用OpenCV中的Stitcher类实现全景图像拼
- opencv实现的sift算法源码,包含了图像
- openCV 上的小波变换
- 基于OPENCV的车牌识别系统设计
- 论文研究 - 傅立叶描述子在外周血涂
- 617张国内车牌60-17bmp图片用于OpenCV正样
- hog特征提取,c版本代码
评论
共有 条评论